OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15418–15429

Non-resonant and non-enhanced Raman Correlation Spectroscopy

A. Barbara, F. Dubois, P. Quémerais, and L. Eng  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15418-15429 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1018 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the first non-resonant and non-enhanced Raman correlation spectroscopy experiments. They are conducted on a confocal microscope combined with a Raman spectrometer. The thermal fluctuations of the Raman intensities scattered by dispersions of polystyrene particles of sub-micrometric diameters are measured and analysed by deriving the autocorrelation functions (ACFs) of the intensities. We show that for particles of diameter down to 200 nm, RCS measurements are successfully obtained in spite of the absence of any source of amplification of the Raman signal. For particles of diameter ranging from 200 to 750 nm, the ACFs present a time-decay behaviour in accordance with the model of free Brownian particles. For particles of 1000 nm in diameter, the AFCs present a different behaviour with a much smaller characteristic time. This results from the dynamics of a single-Brownian particle trapped in the confocal volume by the optical forces of the focus spot.

© 2013 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(270.5290) Quantum optics : Photon statistics

ToC Category:

Original Manuscript: May 3, 2013
Revised Manuscript: June 13, 2013
Manuscript Accepted: June 13, 2013
Published: June 20, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

A. Barbara, F. Dubois, P. Quémerais, and L. Eng, "Non-resonant and non-enhanced Raman Correlation Spectroscopy," Opt. Express 21, 15418-15429 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Gouÿ, “Notes sur le mouvement Brownien,” J. de Phys.7(2), 561–563 (1888).
  2. A. Einstein, “On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat,” Ann. d. Phys.17, 549–560 (1905). [CrossRef]
  3. L. Bachelier, “Théorie de la spéculation,” Ann. sci. de l’ENS17(3), 21–86 (1900).
  4. S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys.15(1), 1–89 (1943). [CrossRef]
  5. H. Z. Cummins, N. Knable, and Y. Yeh, “Observation of diffusion broadening of Rayleigh light,” Phys. Rev. Lett.12(6), 150–153 (1964). [CrossRef]
  6. B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Ed. Wiley & Sons, 1975).
  7. N. Pusey and B. Berne, Photon Correlation Spectroscopy and Velocimetry(Ed. by H. Z. Cummins and E.R. Pike, NATO advanced study institutes series: Physics, 1976).
  8. D. Magde, E. Elson, and W.W. Webb, “Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett.29, 705–708 (1972). [CrossRef]
  9. R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. J. Biophys.22, 169–175 (1993). [CrossRef]
  10. R. Rigler, “Fluorescence correlations, single molecule detection and large number screening. Applications in biotechnology,” J. of. Biotechno.41, 177–186 (1995). [CrossRef]
  11. O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys.65, 251–297 (2002). [CrossRef]
  12. W. Schrof, J. F. Klinger, S. Rozouvan, and D. Horn, “Raman correlation spectroscopy: A method for studying chemical composition and dynamics of disperse systems,” Phys. rev. E.57(3), R2523–R2526 (1998). [CrossRef]
  13. R. S. Mulliken, “Intensities of electronic transitions in molecular spectra VII. Conjugated polyenes and carotenoids,” J. Chem. Phys.7, 364–373 (1939). [CrossRef]
  14. S. F. Parker, S. M. Tavender, N. Mi. Dixon, H. Herman, K. P. J. Williams, and W. F. Maddams, “Raman spectrum of beta-carotene using laser lines from green (514.5 nm) to near-infrared (1064 nm): Implications for the characterization of conjugated polyenes,” App. Spect.53(1), 86–91 (1999). [CrossRef]
  15. C. Eggeling, J. Schaffer, C. A. M. Seidel, J. Korte, G. Brehm, S. Schneider, and W. Schrof, “Homogeneity, transport and signal properties of single Ag particles studied by single-molecule surface-enhanced resonance Raman scattering,” J. of Phys. Chem. A105(15), 3673–3679 (2001). [CrossRef]
  16. T. Hellerer, A. Schiller, G. Jung, and A. Zumbusch, “Coherent anti-Stokes Raman scattering (CARS) correlation spectroscopy,” Chem. Phys. Chem.7, 630–633 (2002). [CrossRef]
  17. J. Cheng, E. O. Potma, and S. X. Xie, “Coherent anti-Stokes Raman scattering correlation spectroscopy: Probing dynamical processes with chemical selectivity,” J. Phys. Chem. A106, 8561–8568 (2002). [CrossRef]
  18. M. Nishida and E. R. Van Keuren, “Derivation of the optical autocorrelation function from Raman scattering of diffusing particles,” J. Mod. Opt.59(2), 102–105 (2012). [CrossRef]
  19. M. Nishida, “Raman correlation spectroscopy: A feasibility study of a new optical correlation technique and development of multi-component nanoparticles using the reprecipitation method,” Ph.D. Dissertation , Georgetown University, Washington, D.C., 2011.
  20. M. Minsky, “Memoir on inventing the confocal microscope,” Scanning10, 128138 (1988). [CrossRef]
  21. R. Webb, “Confocal optical microscopy,” Rep. Prog. Phys.59, 427–471 (1996). [CrossRef]
  22. D. W. Schaefer, “Dynamics of number fluctuations: motile macroorganisms,” Science180, 1293–1295 (1973). [CrossRef] [PubMed]
  23. S. R. Aragon and R. Pecora, “Fluorescence correlation spectroscopy as a probe for molecular dynamics,” J. Chem. Phys.64(4), 1791–1803 (1976). [CrossRef]
  24. N. Thompson, “Topics in fluorescence spectroscopy, Volume I: Techniques,” Ed. Joseph R. Lakowicz, Plenum Press, New York (1991).
  25. T. J. Herbert and J. D. Acton, “Photon correlation spectroscopy of light scattered from microscopic regions,” Appl. Opt.18(5), 588–590(1979). [CrossRef] [PubMed]
  26. A. Barbara, T. López-Ríos, S. Dumont, F. Gay, and P. Quémerais, “A microscope spectrometer for light scattering investigations,” App. Opt.49(22), 4193–4201 (2010). [CrossRef]
  27. A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-steward, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys.108, 033111-1-6(2010). [CrossRef]
  28. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970). [CrossRef]
  29. A. Ashkin, “Forces of a singe-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992). [CrossRef] [PubMed]
  30. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235, 1517–1520 (1987). [CrossRef] [PubMed]
  31. R. Bar-Ziv, A. Meller, T. Tlusty, J. Stavans, and S. A. Safran, “Localized dynamic light scattering: Probing single particle dynamics at the nanoscale,” Phys. Rev. Lett.78(1), 154–157 (1997). [CrossRef]
  32. N. B. Viana, R. T. S. Freire, and O. N. Mesquita, “Dynamic light scattering from an optically trapped microsphere,” Phys. Rev. E65, 041921-1-11 (2002). [CrossRef]
  33. C. Hosokawa, H. Yoshikawa, and H. Masuhar, “Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Phys. Rev. E72, 021408-1-7(2005). [CrossRef]
  34. M. J. Lang and S. M. Block, “Resource Letter: LBOT-1: Laser-based optical tweezers,” Am.J. Phys.71, 201–215, (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited