OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15432–15437

Experimental study on modulation of Stokes parameters on propagation of a Gaussian Schell model beam in free space

Manish Verma, P. Senthilkumaran, Joby Joseph, and H. C. Kandpal  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15432-15437 (2013)
http://dx.doi.org/10.1364/OE.21.015432


View Full Text Article

Enhanced HTML    Acrobat PDF (1475 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect on the Stokes parameters of a Gaussian Schell model beam on propagation in free space is studied experimentally and results are matched with the theory [X. H. Zhao, et al. Opt. Express 17, 17888 (2009)] that in general the degree of polarization of a Gaussian Schell model beam doesn’t change on propagation if the three spectral correlation widths δ x x , δ y y , δ x y are equal and the beam width parameters σ x = σ y . It is experimentally shown that all the four Stokes parameters at the center of the beam decrease on propagation while the magnitudes of the normalized Stokes parameters and the spectral degree of polarization at the center of the beam remain constant for different propagation distances.

© 2013 OSA

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(260.5430) Physical optics : Polarization
(350.5500) Other areas of optics : Propagation

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: January 7, 2013
Revised Manuscript: February 18, 2013
Manuscript Accepted: February 19, 2013
Published: June 21, 2013

Citation
Manish Verma, P. Senthilkumaran, Joby Joseph, and H. C. Kandpal, "Experimental study on modulation of Stokes parameters on propagation of a Gaussian Schell model beam in free space," Opt. Express 21, 15432-15437 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15432


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. H. Zhao, Y. Yao, Y. Sun, and C. Liu, “Condition for Gaussian Schell-model beam to maintain the state of polarization on the propagation in free space,” Opt. Express17(20), 17888–17894 (2009). [CrossRef] [PubMed]
  2. E. Wolf, “Polarization invariance in beam propagation,” Opt. Lett.32(23), 3400–3401 (2007). [CrossRef] [PubMed]
  3. O. Korotkova and E. Wolf, “Generalized Stokes parameters of random electromagnetic beams,” Opt. Lett.30(2), 198–200 (2005). [CrossRef] [PubMed]
  4. D. F. V. James, “Change of polarization of light beams on propagation in free space,” J. Opt. Soc. Am. A11(5), 1641–1643 (1994). [CrossRef]
  5. O. Korotkova, M. Salem, and E. Wolf, “The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence,” Opt. Commun.233(4-6), 225–230 (2004). [CrossRef]
  6. H. Roychowdhury, S. A. Ponomarenko, and E. Wolf, “Change in the polarization of partially coherent electromagnetic beams propagating through the turbulent atmosphere,” J. Mod. Opt.52, 1611–1618 (2005). [CrossRef]
  7. M. Salem, O. Korotkova, A. Dogariu, and E. Wolf, “Polarization changes in partially coherent electromagnetic beams propagating through turbulent atmosphere,” Waves Random Media14(4), 513–523 (2004). [CrossRef]
  8. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A312(5-6), 263–267 (2003). [CrossRef]
  9. O. Korotkova, “Sufficient condition for polarization invariance of beams generated by quasi-homogeneous sources,” Opt. Lett.36(19), 3768–3770 (2011). [CrossRef] [PubMed]
  10. E. Wolf, “Invariance of the Spectrum of Light on Propagation,” Phys. Rev. Lett.56(13), 1370–1372 (1986). [CrossRef] [PubMed]
  11. J. Pu, O. Korotkova, and E. Wolf, “Invariance and noninvariance of the spectra of stochastic electromagnetic beams on propogation,” Opt. Lett.31(14), 2097–2099 (2006). [CrossRef] [PubMed]
  12. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).
  13. X. Zhao, Y. Yao, Y. Sun, and C. Liu, “Circle polarization shift keying with direct detection for free-space optical communication,” J. Opt. Commun. Netw.1(4), 307–312 (2009). [CrossRef]
  14. O. Korotkova, M. Salem, and E. Wolf, “Beam conditions for radiation generated by an electromagnetic Gaussian Schell-model source,” Opt. Lett.29(11), 1173–1175 (2004). [CrossRef] [PubMed]
  15. F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, “Partially polarized Gaussian Schell-model beams,” J. Opt. A, Pure Appl. Opt.3(1), 1–9 (2001). [CrossRef]
  16. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  17. R. H. Brown and R. Twiss, “Correlation between photons in two coherent beams of light,” Nature177(4497), 27–29 (1956). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited