OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15452–15463

Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses

Sören Richter, Sven Döring, Frank Burmeister, Felix Zimmermann, Andreas Tünnermann, and Stefan Nolte  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15452-15463 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3480 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The absorption and heat accumulation of successive ultrashort laser pulses in fused silica leads to melting of the material. We analyze the structure and formation of disruptions that occur within the trace of the molten material. We employed focused ion beam (FIB) milling to reveal the inner structure of these disruptions. The disruptions consist of several small voids which form a large cavity with a diameter of several tens of micrometer. Based on the observations, we suggest a model explaining the formation of these disruptions as a results of a fast quenching process of the molten material after the laser irradiation has stopped. In addition, we analyzed the periodic and non-periodic formation of disruptions. The processing parameters strongly influence the formation of disruptions.

© 2013 osa

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(320.2250) Ultrafast optics : Femtosecond phenomena
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Microfabrication

Original Manuscript: February 27, 2013
Revised Manuscript: April 26, 2013
Manuscript Accepted: May 20, 2013
Published: June 21, 2013

Sören Richter, Sven Döring, Frank Burmeister, Felix Zimmermann, Andreas Tünnermann, and Stefan Nolte, "Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses," Opt. Express 21, 15452-15463 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Itoh, W. Watanbe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull., 31, 620–625 (2006). [CrossRef]
  2. R. R. Gattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. photonics, 2, 219–225 (2008). [CrossRef]
  3. A. Szameit and S. Nolte, “Discrete optics in femtosecond-laser-written photonic structures,” J. Phys. B - At. Mol. Opt., 43, 163001 (2010). [CrossRef]
  4. Y. Shimotsuma, P.G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultra-short Light Pulses,” Phys. Rev. Lett.91, 247405 (2003). [CrossRef] [PubMed]
  5. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Threedimensional optical storage inside transparent materials,” Opt. Lett.21, 2023–2025 (1996). [CrossRef] [PubMed]
  6. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71, 882–884 (1997). [CrossRef]
  7. E. G. Gamaly, S. Juodkazis, K. Nishimura, and H. Misawa, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73, 214101 (2006). [CrossRef]
  8. S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett.88,201909 (2006).
  9. W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, “Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,” Opt. Lett.25, 1669–1671 (2000). [CrossRef]
  10. H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A88, 285–288 (2007). [CrossRef]
  11. C. Mauclair, A. Mermillod-Blondin, S. Landon, N. Huot, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses,” Opt. Lett.36, 325–327 (2011). [CrossRef] [PubMed]
  12. C. Miese, M. J. Withford, and A. Fuerbach, “Femtosecond laser direct-writing of waveguide Bragg gratings in a quasi cumulative heating regime,” Opt. Express19, 19542–19550 (2011). [CrossRef] [PubMed]
  13. T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glasses,” New J. Phys.9, 1–9 (2007). [CrossRef]
  14. C.B. Schaffer, J.F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A76, 351–354 (2003). [CrossRef]
  15. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16, 9443–9458 (2008). [CrossRef] [PubMed]
  16. W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett89, 021106 (2006). [CrossRef]
  17. S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl.Phys. A103, 257–261 (2011). [CrossRef]
  18. Y. Bellouard and M.-O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express19, 6807–6821 (2011). [CrossRef] [PubMed]
  19. R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B.87, 21–27 (2007). [CrossRef]
  20. S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photonics Rev.6, 787–792 (2012). [CrossRef]
  21. M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys.108, 073533 (2010). [CrossRef]
  22. I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro. Nanoen.2, 57–63 (2007). [CrossRef]
  23. T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-Raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys.51, 2403 (2012).
  24. S. Spinner and R.M. Waxler, “Relation between refractive index and density of glasses resulting from annealing compared with corresponding relation resulting from compression,” Appl. Optics5, 1886–1888 (1966). [CrossRef]
  25. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express11, 1070–1079 (2003). [CrossRef] [PubMed]
  26. J. W. Chan, T. R. Huser, S. R. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A76, 367–372 (2003). [CrossRef]
  27. E. B. Shand, Engineering Glass, Modern Materials(Academic Press, New York1968) Vol. 6, p. 262.
  28. Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass” Opt. Express, 19, 5725–5734 (2011). [CrossRef] [PubMed]
  29. R. Kelly and A. Miotello, “Contribution of vaporization and boiling to thermal-spike sputtering by ions or laser pulses” Phys. Rev. E,60, 2616–2625 (1999). [CrossRef]
  30. M. Sakakura, M. Teratsuma, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express15, 5674–5686 (2007). [CrossRef] [PubMed]
  31. U. Fuchs, U. D. Zeitner, and A. Tünnermann, “Ultra-short pulse propagation in complex optical systems,” Opt. Express13, 3852–3862 (2005). [CrossRef] [PubMed]
  32. J. J. Stamnes, Waves in Focal Regions(Taylor & Francis, New York, 1986).
  33. http://assets.newport.com/webDocuments-EN/images/16000.pdf ; 20/01/2013.
  34. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McCraw-Hill, New York, 1996).
  35. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed.( Acadamic Press, San Diego, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited