OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15490–15504

Graphene-based plasmonic switches at near infrared frequencies

J. S. Gómez-Díaz and J. Perruisseau-Carrier  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15490-15504 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1633 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The concept, analysis, and design of series switches for graphene-strip plasmonic waveguides at near infrared frequencies are presented. Switching is achieved by using graphene’s field effect to selectively enable or forbid propagation on a section of the graphene strip waveguide, thereby allowing good transmission or high isolation, respectively. The electromagnetic modeling of the proposed structure is performed using full-wave simulations and a transmission line model combined with a matrix-transfer approach, which takes into account the characteristics of the plasmons supported by the different graphene-strip waveguide sections of the device. The performance of the switch is evaluated versus different parameters of the structure, including surrounding dielectric media, electrostatic gating and waveguide dimensions.

© 2013 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(250.6715) Optoelectronics : Switching

ToC Category:
Integrated Optics

Original Manuscript: February 1, 2013
Revised Manuscript: June 12, 2013
Manuscript Accepted: June 12, 2013
Published: June 21, 2013

J. S. Gómez-Díaz and J. Perruisseau-Carrier, "Graphene-based plasmonic switches at near infrared frequencies," Opt. Express 21, 15490-15504 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004). [CrossRef] [PubMed]
  2. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007). [CrossRef]
  3. Y. Wang, E. W. Plummer, and K. Kempa, “Foundations of plasmonics,” Adv. Phys.60, 799–898 (2011). [CrossRef]
  4. J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, “Plasmonic nanolayer composites: Coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation,” J. Nanomaterials2007, 79469 (2007). [CrossRef]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003). [CrossRef] [PubMed]
  6. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Sensor Actuat. B.3, 388–394 (2009).
  7. J. Homola, S. S. Yeea, and G. Gauglitzb, “Surface plasmon resonance sensors: review,” Sensor Actuat. B.54, 3–15 (1999). [CrossRef]
  8. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Mater.6, 183–91 (2007). [CrossRef]
  9. I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single and multilayer graphene,” Nature Phys.7, 48–51 (2010). [CrossRef]
  10. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011). [CrossRef] [PubMed]
  11. M. Tamagnone, J. S. Gómez-Díaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable thz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett.101, 214102 (2012). [CrossRef]
  12. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature Photon.6, 749–758 (2012). [CrossRef]
  13. F. H. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: A plaftform for strong light-matter interactions,” Nano Lett.11, 3370–3377 (2011). [CrossRef] [PubMed]
  14. G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity of graphene,” J. Appl. Phys.103, 064302 (2008). [CrossRef]
  15. M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009). [CrossRef]
  16. A. Ferreira, N. M. R. Peres, and A. H. C. Neto, “Confined magneto-optical waves in graphene,” Phys. Rev. B85, 205426 (2012). [CrossRef]
  17. J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Propagation of hybrid transverse magnetic-transverse electric plasmons on magnetically-biased graphene sheets,” J. Appl. Phys.112, 124906 (2012). [CrossRef]
  18. A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (2011). [CrossRef]
  19. D. L. Sounas and C. Caloz, “Edge surface modes in magnetically biased chemically doped graphene strips,” Appl. Phys. Lett.99, 231902 (2011). [CrossRef]
  20. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012). [CrossRef]
  21. E. H. Hwang and J. D. Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75, 205418 (2007) [CrossRef]
  22. B. Standley, W. Bao, H. Zhang, J. Bruck, C. N. Lau, and M. Bockrath, “Graphene-based atomic-scale switches,” Appl. Phys. Lett.8, 3345–3349 (2008).
  23. T. Palacios, A. Hsu, and H. Wang, “Applications of graphene devices in rf communications,” IEEE Commun. Mag.48, 122–128 (2010). [CrossRef]
  24. K. M. Milaninia, M. A. Baldo, A. Reina, and J. Kong, “All graphene electromechanical switch fabricated by chemical vapor deposition,” Appl. Phys. Lett.95, 183105 (2009). [CrossRef]
  25. J. Perruisseau-Carrier, “Graphene for antenna applications: opportunities and challenges from microwaves to thz,” in Antennas and Propagation Conference (LAPC)Loughborough, UK (2012).
  26. Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Mechanism for graphene-based optoelectronic switches by tuning surface plasmon-polaritons in monolayer graphene,” Europhys. Lett.92, 68001 (2010). [CrossRef]
  27. P. Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE T. Antenn. Propag.61, 1528–1537 (2013). [CrossRef]
  28. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004). [CrossRef] [PubMed]
  29. V. P. Gusynin, S. G. Sharapov, and J. B. Carbotte, “On the universal ac optical background in graphene,” New J. Physics11, 095013 (2009). [CrossRef]
  30. L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B56, 281–284 (2007). [CrossRef]
  31. J. S. Gómez-Díaz, J. R. Mosig, and J. Perruisseau-Carrier, “Effect of spatial dispersion on surfaces waves propagating along graphene sheets,” arXiv:1301.1337 (2012).
  32. Z. Chen and J. Appenzeller, “Mobility extraction and quantum capacitance impact in high performance graphene field-effect transistor devices,” in IEEE International Electron Devices Meeting (IEDM)San Francisco, USA (2008)
  33. D. Berdebes, T. Low, and M. Lundstrom, “Low bias transport in graphene: An introduction,” in Proc. NCN@Purdue Summer Sch.-Electronics from the Bottom Up (2011)
  34. D. Pozar, Microwave Engineering(John Wiley and Sons, 2005).
  35. J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Far-infrared study of substrate-effect on large scale graphene,” Appl. Phys. Lett.98, 201907 (2011). [CrossRef]
  36. X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science324, 768–771 (2009). [CrossRef] [PubMed]
  37. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457, 706–710 (2009). [CrossRef] [PubMed]
  38. A. Reina, X. Jia, J. Z. Ho, D. Nezich, H. Son, V. Bulovic, M. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9, 30–35 (2009). [CrossRef]
  39. S. Bae, K. Heongkeun, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat Nano5, 574–578 (2010). [CrossRef]
  40. K. Geim, “Graphene: status and prospects,” Science324, 1530–1532 (2009). [CrossRef] [PubMed]
  41. Ansoft Corporation, “High frequency structure simulator (HFSS) v.14.,” (2012).
  42. R. E. Collin, Field theory of guided waves(IEEE, Piscataway, 1991)
  43. J. Jin, The finite element method in electromagnetic(Wiley, New York, 1993)
  44. J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite element method for electromagnetics: antennas, microwave circuits, and scattering applications(IEEE, Piscataway, 1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited