OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15505–15513

Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes

Weina Han, Lan Jiang, Xiaowei Li, Pengjun Liu, Le Xu, and YongFeng Lu  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15505-15513 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2535 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Large-area, uniform laser-induced periodic surface structures (LIPSS) are of wide potential industry applications. The continuity and processing precision of LIPSS are mainly determined by the scanning intervals of adjacent scanning lines. Therefore, continuous modulations of LIPSS and scanned line-widths within one laser scanning pass are of great significance. This study proposes that by varying the laser (800 nm, 50 fs, 1 kHz) polarization direction, LIPSS and the scanned line-widths on a silicon (111) surface can be continuously modulated with high precision. It shows that the scanned line-width reaches the maximum when the polarization direction is perpendicular to the scanning direction. As an application example, the experiments show large-area, uniform LIPSS can be fabricated by controlling the scanning intervals based on the one-pass scanned line-widths. The simulation shows that the initially formed LIPSS structures induce directional surface plasmon polaritons (SPP) scattering along the laser polarization direction, which strengthens the subsequently anisotropic LIPSS fabrication. The simulation results are in good agreement with the experiments, which both support the conclusions of continuous modulations of the LIPSS and scanned line-widths.

© 2013 OSA

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Laser Microfabrication

Original Manuscript: March 14, 2013
Revised Manuscript: April 12, 2013
Manuscript Accepted: April 13, 2013
Published: June 21, 2013

Weina Han, Lan Jiang, Xiaowei Li, Pengjun Liu, Le Xu, and YongFeng Lu, "Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes," Opt. Express 21, 15505-15513 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Hong, J. Zhu, and C. A. Mirkin, “Multiple ink nanolithography: toward a multiple-pen nano-plotter,” Science286(5439), 523–525 (1999). [CrossRef] [PubMed]
  2. U. Lüders, F. Sánchez, and J. Fontcuberta, “Self-organized structures in CoCr2O4 (001) thin films: tunable growth from pyramidal clusters to {111} fully faceted surface,” Phys. Rev. B70(4), 045403 (2004). [CrossRef]
  3. H. Yuan, V. Yost, M. Page, P. Stradins, D. Meier, and H. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009). [CrossRef]
  4. J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys.108(3), 034903 (2010). [CrossRef]
  5. A. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008). [CrossRef]
  6. T. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys.108(7), 073523 (2010). [CrossRef]
  7. J. Li, S. Ho, M. Haque, and P. Herman, “Nanogratingbragg responses of femtosecond laser written optical waveguides in fused silica glass,” Opt. Mater. Express2(11), 1562–1570 (2012). [CrossRef]
  8. Y. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. Lu, and H. Tsai, “Formation mechanisms of sub-wavelength ripples during fs laser pulse train processing of dielectrics,” J. Phys. D Appl. Phys.45(17), 175301 (2012). [CrossRef]
  9. H. Yuan, V. Yost, M. Page, P. Stradins, D. Meier, and H. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009). [CrossRef]
  10. F. Liang, R. Vallée, and L. Chin, “Pulse fluence dependent nanograting inscription on the surface of fused silica,” Appl. Phys. Lett.100(25), 251105 (2012). [CrossRef]
  11. B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express18(3), 2913–2924 (2010). [CrossRef] [PubMed]
  12. J. T. Chen, W. C. Lai, Y. J. Kao, Y. Y. Yang, and J. K. Sheu, “Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes,” Opt. Express20(5), 5689–5695 (2012). [CrossRef] [PubMed]
  13. L. Jiang, D. Ying, X. Li, and Y. Lu, “Two-step femtosecond laser pulse train fabrication of nanostructured substrates for highly surface-enhanced Raman scattering,” Opt. Lett.37(17), 3648–3650 (2012). [CrossRef] [PubMed]
  14. V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency,” Adv. Mater.20(21), 4049–4054 (2008). [CrossRef]
  15. I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir28(20), 7938–7945 (2012). [CrossRef] [PubMed]
  16. K. Q. Peng, Z. P. Huang, and J. Zhu, “Fabrication of Large-Area Silicon Nanowire p–n Junction Diode Arrays,” Adv. Mater.16(1), 73–76 (2004). [CrossRef]
  17. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express16(23), 19354–19365 (2008). [CrossRef] [PubMed]
  18. R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, “Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate,” Opt. Lett.36(2), 229–231 (2011). [CrossRef] [PubMed]
  19. H. W. Choi, D. F. Farson, J. Bovatsek, A. Arai, and D. Ashkenasi, “Direct-write patterning of indium-tin-oxide film by high pulse repetition frequency femtosecond laser ablation,” Appl. Opt.46(23), 5792–5799 (2007). [CrossRef] [PubMed]
  20. E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space,” Langmuir27(9), 5596–5606 (2011). [CrossRef] [PubMed]
  21. L. Jiang, X. Shi, X. Li, Y. Yuan, C. Wang, and Y. Lu, “Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains,” Opt. Express20(19), 21505–21511 (2012). [CrossRef] [PubMed]
  22. J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process.92(4), 1019–1024 (2008). [CrossRef]
  23. O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci.252(13), 4702–4706 (2006). [CrossRef]
  24. J. Wang and C. Guo, “Permanent recording of light helicity on optically inactive metal surfaces,” Opt. Lett.31(24), 3641–3643 (2006). [CrossRef] [PubMed]
  25. K. Lou, S. X. Qian, X. L. Wang, Y. Li, B. Gu, C. Tu, and H. T. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express20(1), 120–127 (2012). [CrossRef] [PubMed]
  26. D. Hwang, C. Grigoropoulos, and T. Choi, “Efficiency of silicon micromachining by femtosecond laser pulses in ambient air,” J. Appl. Phys.99(8), 083101 (2006). [CrossRef]
  27. T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett.92(1), 013104 (2008). [CrossRef]
  28. G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011). [CrossRef] [PubMed]
  29. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009). [CrossRef] [PubMed]
  30. F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express19(10), 9035–9043 (2011). [CrossRef] [PubMed]
  31. X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett.98(25), 251109 (2011). [CrossRef]
  32. J. Bonse, A. Rosenfeld, and J. Krüger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci.257(12), 5420–5423 (2011). [CrossRef]
  33. J. Yang, R. Wang, W. Liu, Y. Sun, and X. Zhu, “Investigation of microstructuring CuInGaSe2 thin films with ultrashort laser pulses,” J. Phys. D42(21), 215305 (2009). [CrossRef]
  34. B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structures on crystalline silicon,” J. Micromech. Microeng.16(5), 1080–1085 (2006). [CrossRef]
  35. M. Shen, C. Crouch, J. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003). [CrossRef]
  36. W. Zhang, G. Cheng, and Q. Feng, “Unclassical ripple patterns in single-crystal silicon produced by femtosecond laser irradiation,” Appl. Surf. Sci.263, 436–439 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited