OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15514–15521

Enhancement of acoustic sensitivity of hollow-core photonic bandgap fibers

Fan Yang, Wei Jin, Hoi Lut Ho, Fuyin Wang, Wen Liu, Lina Ma, and Yongming Hu  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15514-15521 (2013)
http://dx.doi.org/10.1364/OE.21.015514


View Full Text Article

Enhanced HTML    Acrobat PDF (1939 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: The acoustic pressure sensitivities of hollow-core photonic bandgap fibers (HC-PBFs) with different thicknesses of silica outer-cladding and polymer jacket were experimentally investigated. Experiment with a HC-PBF with 7 μm-thick silica outer cladding and 100 μm-thick Parylene C jacket demonstrated a pressure sensitivity 10 dB higher than the commercial HC-1550-02 fiber and 25 dB higher than a standard single mode fiber. The significant enhancement in sensitivity would simplify the design of fiber hydrophone arrays and increase the number of sensors that could be multiplexed in a single fiber.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(120.5475) Instrumentation, measurement, and metrology : Pressure measurement

ToC Category:
Sensors

History
Original Manuscript: March 18, 2013
Revised Manuscript: April 30, 2013
Manuscript Accepted: May 2, 2013
Published: June 21, 2013

Citation
Fan Yang, Wei Jin, Hoi Lut Ho, Fuyin Wang, Wen Liu, Lina Ma, and Yongming Hu, "Enhancement of acoustic sensitivity of hollow-core photonic bandgap fibers," Opt. Express 21, 15514-15521 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15514


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber optic hydrophone,” J. Acoust. Soc. Am.62(5), 1302–1304 (1977). [CrossRef]
  2. J. H. Cole, R. L. Johnson, and P. G. Bhuta, “Fiber optic detection of sound,” J. Acoust. Soc. Am.62(5), 1136–1138 (1977). [CrossRef]
  3. B. Budiansky, D. C. Drucker, G. S. Kino, and J. R. Rice, “Pressure sensitivity of a clad optical fiber,” Appl. Opt.18(24), 4085–4088 (1979). [CrossRef] [PubMed]
  4. R. Hughes and J. Jarzynski, “Static pressure sensitivity amplification in interferometric fiber-optic hydrophones,” Appl. Opt.19(1), 98–107 (1980). [CrossRef] [PubMed]
  5. N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, and J. A. Bucaro, “Optimizing fiber coatings for interferometric acoustic sensors,” IEEE J. Quantum Electron.18(4), 683–689 (1982). [CrossRef]
  6. J. A. Bucaro, N. Lagakos, H. H. Cole, and T. G. Giallorenzi, “Fiber optic acoustic transduction,” in Physical Acoustics vol 16, W. P. Mason and R. N. Thurston, eds. (Academic Press Inc, 1982), pp. 385–457.
  7. G. McDearmon, “Theoretical analysis of a push-pull fiber-optic hydrophone,” J. Lightwave Technol.5(5), 647–652 (1987). [CrossRef]
  8. C. K. Kirkendall and A. Dandridge, “Overview of high performance fiber-optic sensing,” J. Phys. D37(18), 197–216 (2004). [CrossRef]
  9. J. H. Cole, C. Sunderman, A. B. Tveten, C. Kirkendall, and A. Dandridge, “Preliminary investigation of air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,” in Proceedings of 15th International Conference on Optical Fiber Sensors, (Portland, 2002), pp. 317–320. [CrossRef]
  10. J. H. Cole, S. Mothley, J. Jarzynski, A. B. Tveten, C. Kirkendall, and A. Dandridge, “Air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,” in Proceedings of 16th International Conference on Optical Fiber Sensors, (Nara, 2003), pp. 214–217.
  11. M. Pang and W. Jin, “Detection of acoustic pressure with hollow-core photonic bandgap fiber,” Opt. Express17(13), 11088–11097 (2009). [CrossRef] [PubMed]
  12. M. Pang, H. F. Xuan, J. Ju, and W. Jin, “Influence of strain and pressure to the effective refractive index of the fundamental mode of hollow-core photonic bandgap fibers,” Opt. Express18(13), 14041–14055 (2010). [CrossRef] [PubMed]
  13. Specialty Coating Systems website, http://scscoatings.com
  14. T. A. Harder, T. J. Yao, Q. He, C. Y. Shih, and Y. C. Tai, “Residual stress in thin-film parylene-C,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (Las Vegas, 2002), pp. 435–438.
  15. A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation-insensitive fibre optic Michelson interferometer,” Electron. Lett.27(6), 518–520 (1991). [CrossRef]
  16. Y. M. Hu, Z. L. Hu, H. Luo, and L. N. Ma, “Recent progress toward fiber optic hydrophone research, application and commercialization in China,” Proc. SPIE 8421, 22nd International Conference on Optical Fiber Sensors, 84210Q (2012). [CrossRef]
  17. A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE Trans. Microw. Theory Tech.30(10), 1635–1641 (1982). [CrossRef]
  18. L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and PropertiesII (Cambridge University, 1997), Chap. 4.
  19. R. M. Christensen, “Mechanics of cellular and other low-density materials,” Int. J. Solids Struct.37(1-2), 93–104 (2000). [CrossRef]
  20. V. Dangui, H. K. Kim, M. Digonnet, and G. Kino, “Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers,” Opt. Express13(18), 6669–6684 (2005). [CrossRef] [PubMed]
  21. Shared Materials Instruction Facility in Duke University, https://smif.lab.duke.edu/pdf/UsefulParametersForParyleneDeposition.pdf
  22. Y. Liu and M. B. Huglin, “Effective crosslinking densities and elastic moduli of some physically crosslinked hydrogels,” Polymer (Guildf.)36(8), 1715–1718 (1995). [CrossRef]
  23. J. M. Williams, J. J. Bartos, and M. H. Wilkerson, “Elastic modulus dependence on density for polymeric foams with systematically changing microstructures,” J. Mater. Sci.25(12), 5134–5141 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited