OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15530–15537

Radially and azimuthally polarized nonparaxial Bessel beams made simple

Marco Ornigotti and Andrea Aiello  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15530-15537 (2013)
http://dx.doi.org/10.1364/OE.21.015530


View Full Text Article

Enhanced HTML    Acrobat PDF (1437 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method for the realization of radially and azimuthally polarized nonparaxial Bessel beams in a rigorous but simple manner. This result is achieved by using the concept of Hertz vector potential to generate exact vector solutions of Maxwell’s equations from scalar Bessel beams. The scalar part of the Hertz potential is built by analogy with the paraxial case as a linear combination of Bessel beams carrying a unit of orbital angular momentum. In this way we are able to obtain spatial and polarization patterns analogous to the ones exhibited by the standard cylindrically polarized paraxial beams. Applications of these beams are discussed.

© 2013 OSA

OCIS Codes
(260.0260) Physical optics : Physical optics
(260.5430) Physical optics : Polarization
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

History
Original Manuscript: April 24, 2013
Revised Manuscript: May 23, 2013
Manuscript Accepted: May 27, 2013
Published: June 21, 2013

Citation
Marco Ornigotti and Andrea Aiello, "Radially and azimuthally polarized nonparaxial Bessel beams made simple," Opt. Express 21, 15530-15537 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15530


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. J. R. Sheppard, “Polarization of almost-plane waves,” J. Opt. Soc. Am. A17, 335–341 (2000). [CrossRef]
  2. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9, 78 (2007). [CrossRef]
  3. R. Martinez-Herrero, P. M. Mejias, and G. Piquero, Characterization of Partially Polarized Light Fields (Springer, 2009). [CrossRef]
  4. B. Sich, B. Hecht, and L. Novotny, “Orientational imagine of single molecules by annular illumination,” Phys. Rev. Lett.85, 4482 (2000). [CrossRef]
  5. G. Volpe, G. D. Singh, and D. Petrov, “Optical tweezers with cylindrical vector beams produced by optical fibers,” Proc. of SPIE, 5514, 283–292 (2004). [CrossRef]
  6. N. Huse, A. Schönle, and S. W. Hell, “Z-polarized confocal microscopy,” J. Biomed. Opt.6, 480–484 (2001). [CrossRef]
  7. A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, “Generation of high-poser radially polarized beams,” Appl. Opt.29, 2234–2239 (1990). [CrossRef]
  8. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A86, 329–334 (2006). [CrossRef]
  9. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett91, 233901 (2003). [CrossRef] [PubMed]
  10. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun.179, 1–6 (2000). [CrossRef]
  11. J. R. Zurita-Sanchez and L. Novotny, “Multipolar interband absorption in a semiconductor quantum dot. II. Magnetic dipole enhancement,” J. Opt. Soc. Am. B19, 2722–2726 (2002). [CrossRef]
  12. G. Cincotti, A. Ciattoni, and C. Sapia, “Radially and azimuthally polarized vortices in uniaxial crystals,” Opt. Commun.220, 33–44 (2003). [CrossRef]
  13. T. Fedayeva, A. F. Rubass, I. S. Valkov, and A. V. Volyar, “Fractional optical vortices in a uniaxial crystal,” J. Opt.15, 044020 (2013). [CrossRef]
  14. T. Fedayeva, V. Shvedov, N. Shostka, C. Alexeyev, and A. Volyar, “Natural shaping of the cylindrically polarized beams,” Opt. Lett35, 3787–3789 (2010). [CrossRef]
  15. A. Ciattoni, B. Crosignani, P. Di Porto, and A. Yariv, “Azimuthally polarized spatial dark solutions: exact solutions of Maxwell’s equations in a Kerr medium,” Phys. Rev. Lett.94, 073902 (2005). [CrossRef] [PubMed]
  16. T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun.252, 12–21 (2005). [CrossRef]
  17. K. C. Toussaint, S. Park, J. E. Jureller, and N. F. Scherer, “Generation of optical vector beams with a diffractive optical element interferoments,” Opt. Lett.30, 2846–2848 (2005). [CrossRef] [PubMed]
  18. Z. Bosmon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant sub wavelength metal stripe gratings,” Appl. Phys. Lett.79, 1587–1589 (2001). [CrossRef]
  19. K. J. Moh, X.-C. Yuan, J. Bu, R. E. Burge, and B. Z. Gao, “Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams,” Appl. Opt.46, 7544–7551 (2007). [CrossRef] [PubMed]
  20. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett.21, 1948–1950 (1996). [CrossRef] [PubMed]
  21. C. Gabriel, A. Aiello, W. Zhong, T.G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russel, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett.106, 060502 (2011). [CrossRef] [PubMed]
  22. A. Holleczek, A. Aiello, C. Gabriel, Ch. Marquardt, and G. Leuchs, “Classical and quantum properties of cylindrically polarized states of light,” Opt. Express19, 9714–9736 (2011). [CrossRef] [PubMed]
  23. S. J. van Enk and H. J. Kimble, “Strongly focused light beams interacting with single atoms in free space,” Phys. Rev. A63, 023809 (2001). [CrossRef]
  24. C. J. R. Shepard and S. Saghafi, “Transevrse-electric and transverse-magnetic beam modes beyond the paraxial approximation,” Opt. Lett.24, 1543–1545 (1999). [CrossRef]
  25. Y. I. Salamin, “Accurate fields of a radially polarized Gaussian laser beam,” N. J. Phys.8, 133 (2006). [CrossRef]
  26. A. April, “Nonparaxial TM and TE beams in free space,” Opt. Lett33, 1563–1565 (2008). [CrossRef] [PubMed]
  27. Z. Bouchal and M. Olivik, “Non-diffractive vector Bessel beams,” J. Mod. Opt.42, 1555–1566 (1995). [CrossRef]
  28. I. D. Chemmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Bessel-like optical beams with arbitrary trajectories,” Opt. Lett.37, 5003–5005 (2012). [CrossRef]
  29. F. Töppel, M. Ornigotti, and A. Aiello, in preparation
  30. M. J. Padgett and J. Courtial, “Poincare-sphere equivalent for light beams containing orbital angular momentum,” Opt. Lett.24, 430–432 (1999). [CrossRef]
  31. O. Svelto, Principles of Lasers (Academic Press, 1998). [CrossRef]
  32. J. D. Jackson, Classical electrodynamics (Wiley, 1999).
  33. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45, 8185–8190 (1992). [CrossRef] [PubMed]
  34. M. Ornigotti and A. Aiello, “Incompleteness of spin and orbital angular momentum separation for light beams,” arXiv:1304:5012 [physics.optics].
  35. A. Aiello and J. P. Woerdman, “Goos-Hänchen and Imbert-Fedorov shifts for nondiffracting Bessel beams,” Opt. Lett.36, 543–545 (2011). [CrossRef] [PubMed]
  36. H. A. Haus and J. L. Pan, “Photon spin and the paraxial wave equation,” Am. J. Phys, 61, 818–821 (1993). [CrossRef]
  37. R. Borghi, M. Santarsiero, and M. A. Porras, “Nonparaxial Bessel-Gauss beams,” J. Opt. Soc. Am. A,18, 1618–1624 (2001). [CrossRef]
  38. A. April, “Bessel-Gauss beams as rigorous solutions of the Helmholtz equation,” J. Opt. Soc. Am. A, 28, 2100–2107 (2011). [CrossRef]
  39. F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization patterns of vector vortex beams generated by q-plateswith different topological charges,” Appl. Opt.51, C1–C6 (2012). [CrossRef]
  40. V. D’Ambrosio, E. Nagali, S. P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, and F. Sciarrino, “Complete experimental toolbox for alignment-free quantum communications,” Nat. Commun.3, 961 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited