OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15553–15567

Simulation of spectral stabilization of high-power broad-area edge emitting semiconductor lasers

Carlo Holly, Stefan Hengesbach, Martin Traub, and Dieter Hoffmann  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15553-15567 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3923 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The simulation of spectral stabilization of broad-area edge-emitting semiconductor diode lasers is presented in this paper. In the reported model light-, temperature- and charge carrier-distributions are solved iteratively in frequency domain for transverse slices along the semiconductor heterostructure using wide-angle finite-difference beam propagation. Depending on the operating current the laser characteristics are evaluated numerically, including near- and far-field patterns of the astigmatic laser beam, optical output power and the emission spectra, with central wavelength and spectral width. The focus of the model lies on the prediction of influences on the spectrum and power characteristics by frequency selective feedback from external optical resonators. Results for the free running and the spectrally stabilized diode are presented.

© 2013 OSA

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:

Original Manuscript: April 22, 2013
Revised Manuscript: June 13, 2013
Manuscript Accepted: June 13, 2013
Published: June 21, 2013

Carlo Holly, Stefan Hengesbach, Martin Traub, and Dieter Hoffmann, "Simulation of spectral stabilization of high-power broad-area edge emitting semiconductor lasers," Opt. Express 21, 15553-15567 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Bachmann, P. Loosen, and R. Poprawe, eds., High Power Diode Lasers - Technology and Applications (Springer, 2007).
  2. M. Traub, M. Bock, H.-D. Hoffmann, and M. Bartram, “Novel high peak current pulsed diode laser sources for direct material processing,” in Proc. SPIE6456, (2007).
  3. G. Erbert, “Progress in high brilliance lasers,” IEEE Photonics Society Summer Topical Meeting Series (2012).
  4. G. Erbert, A. Bärwolff, J. Sebastian, and J. Tomm, “High-Power Broad-Area Diode Lasers and Laser Bars,” in High-Power Diode Lasers, R. Diehl, ed. (Topics Appl. Phys. 78, 173–223, 2000).
  5. Z. Dai, R. Michalzik, P. Unger, and K. J. Ebeling, “Numerical Simulation of Broad-Area High-Power Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron.33(12), 2240–2254 (1997). [CrossRef]
  6. R. J. Lang, A. G. Larsson, and J. G. Cody, “Lateral Modes of Broad Area Semiconductor Lasers: Theory and Experiment,” IEEE J. Quantum Electron.27(3), 312–320 (1991). [CrossRef]
  7. W. W. Chow and H. Amano, “Analysis of lateral mode behavior in broad-area InGaN quantum well lasers,” IEEE J. Quantum Electron.37(2), 265–273 (2001). [CrossRef]
  8. P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol.27(4), 045001 (2012). [CrossRef]
  9. P. Crump, C. M. Schultz, A. Pietrzak, S. Knigge, O. Brox, A. Maaßdorf, F. Bugge, H. Wenzel, and G. Erbert, “975-nm high-power broad area diode lasers optimized for narrow spectral linewidth applications,” in Proc. SPIE7583, (2010).
  10. P. Crump, S. Hengesbach, U. Witte, H.-D. Hoffmann, G. Erbert, and G. Tränkle, “High-Power Diode Lasers Optimized for Low-Loss Smile-Insensitive External Spectral Stabilization,” IEEE Photon. Technol. Lett.24(8), 703–705 (2012). [CrossRef]
  11. J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf, G. Pauliat, G. Lucas-Leclin, P. Georges, R. C. I. MacKenzie, P. Bream, S. Bull, K.-H. Hasler, B. Sumpf, H. Wenzel, G. Erbert, B. Thestrup, P. M. Petersen, N. Michel, M. Krakowski, and E. C. Larkins, “Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes,” IEEE J. Quantum Electron.15, 993–1008 (2009).
  12. J. R. Marciante and G. P. Agrawal, “Nonlinear Mechanisms of Filamentation in Broad-Area Semiconductor Lasers,” IEEE J. Quantum Electron.32(4), 590–596 (1996). [CrossRef]
  13. J. Wykes, L. Borruel, S. Sujecki, I. Esquivias, P. Sewell, T. M. Benson, E. C. Larkins, P. Moreno, and M. Krakowski, “Hot-Cavity Modelling of High-Power Tapered Laser Diodes using Wide-Angle 3D FD-BPM,” in Proc. LEOS1, 91–92 (2002). [CrossRef]
  14. S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Nonlinear Properties of Tapered Laser Cavities,” IEEE J. Sel. Top. Quantum Electron.9(3), 823–834 (2003). [CrossRef]
  15. D. Voelz, Computational Fourier Optics (SPIE Press, 2011).
  16. K. J. Ebeling, Integrated Optoelectronics: Waveguide Optics, Photonics, Semiconductors (Springer, 1993).
  17. J. R. Marciante and G. P. Agrawal, “Controlling Filamentation in Broad-Area Semiconductor Lasers and Amplifiers,” Appl. Phys. Lett.69(5), 593–595 (1996). [CrossRef]
  18. S. W. Koch and W. W. Chow, Semiconductor-Laser Fundamentals (Springer, 1999).
  19. J. Buus, “The Effective Index Method and Its Application to Semiconductor Lasers,” IEEE J. Quantum Electron.18(7), 1083–1089 (1982). [CrossRef]
  20. K. S. Chan, H. H. Li, and C. Y. Chan, “Optical Gain of Interdiffused InGaAs-GaAs and AlGaAs-GaAs Quantum Wells,” IEEE J. Quantum Electron.34(1), 157–165 (1998). [CrossRef]
  21. J. R. Botha and A. W. R. Leitch, “Temperature Dependence of the Photoluminescence Properties and Band Gap Energy of InxGa1–xAs/GaAs Quantum Wells,” J. Electron. Mater.29(12), 1362–1371 (2000). [CrossRef]
  22. B. Witzigmann, A. Witzig, and W. Fichtner, “A Multidimensional Laser Simulator for Edge-Emitters Including Quantum Carrier Capture,” IEEE Trans. Electron. Dev.47(10), 1926–1934 (2000). [CrossRef]
  23. J. Ohtsubo, Semiconductor Lasers – Stability, Instability and Chaos, 2nd Edition (Springer, 2008).
  24. C. L. Xu and W. P. Huang, “Finite-Difference Beam Propagation Method for Guide-Wave Optics,” Progress In Electromagnetics Research, PIER11, 1–49 (1995).
  25. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrödinger Equation (John Wiley & Sons, Inc.,2001).
  26. K. Q. Le and P. Bienstman, “Fast three-dimensional generalized rectangular wide-angle beam propagation method using complex Jacobi iteration,” J. Opt. Soc. Am.26(7), 1469–1472 (2009). [CrossRef]
  27. K. Q. Le and P. Bienstman, “Wide-angle beam propagation method without using slowly varying envelope approximation,” J. Opt. Soc. Am.26(2), 353–356 (2009). [CrossRef]
  28. K. Q. Le, “Complex Padé approximant operators for wide-angle beam propagation,” Opt. Commun.282(7), 1252–1254 (2009). [CrossRef]
  29. W. Nakwaski, “Static thermal properties of broad-contact double- heterostructure laser diodes,” Opt. Quantum Electron.15(6), 513–527 (1983). [CrossRef]
  30. J. Mukherjee and J. G. McInerney, “Electrothermal Analysis of CW High-Power Broad-Area Laser Diodes: A Comparison Between 2-D and 3-D Modeling,” IEEE J. Sel. Top. Quantum Electron.13(5), 1180–1187 (2007). [CrossRef]
  31. P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, “975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers,” Appl. Phys. Lett.96(13), 131110 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited