OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15568–15579

Dual correlated pumping scheme for phase noise preservation in all-optical wavelength conversion

Aravind P. Anthur, Regan T. Watts, Kai Shi, John O’ Carroll, Deepa Venkitesh, and Liam P. Barry  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15568-15579 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1114 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the effect of transfer of phase noise in different four wave mixing schemes using a coherent phase noise measurement technique. The nature of phase noise transfer from the pump to the generated wavelengths is shown to be independent of the type of phase noise (1 / f or white noise frequency components). We then propose a novel scheme using dual correlated pumps to prevent the increase in phase noise in the conjugate wavelengths. The proposed scheme is experimentally verified by the all-optical wavelength conversion of a DQPSK signal at 10.7 GBaud.

© 2013 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Nonlinear Optics

Original Manuscript: April 4, 2013
Revised Manuscript: April 22, 2013
Manuscript Accepted: April 22, 2013
Published: June 21, 2013

Aravind P. Anthur, Regan T. Watts, Kai Shi, John O’ Carroll, Deepa Venkitesh, and Liam P. Barry, "Dual correlated pumping scheme for phase noise preservation in all-optical wavelength conversion," Opt. Express 21, 15568-15579 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Wu, “High-speed optical signal processing for terabit/second optical networks,” ACP Technical DigestAS2G.4, (2012).
  2. T. Tripathi and K. N. Sivarajan, “Computing approximate blocking probabilities in wavelength routed all-optical networks with limited-range wavelength conversion,” IEEE J. Se. Area Comm.18,2123–2129 (2000). [CrossRef]
  3. K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightw. Tecnhol.12,1916–1920 (1994). [CrossRef]
  4. T. Richter, R. Elschner, A. Gandhe, K. Petermann, and C. Schubert, “Parametric amplification and wavelength conversion of single- and dual-polarization DQPSK signals,” IEEE J. Sel. Topics Quantum Electron.18,988–995 (2012). [CrossRef]
  5. B. Filion, S. Amiralizadeh, A. T. Nguyen, L. A. Rusch, and S. LaRochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM signals in a semiconductor optical amplifier,” OFCOTh1C.5, (2013). [CrossRef]
  6. V. J. F. Rancano, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “100GHz grid-aligned reconfigurable polarization insensitive black-box wavelength converter,” OFCJTh2A.19, (2013).
  7. P. P. Baveja, D. N. Maywar, and G. P. Agrawal, “Interband four-wave mixing in semiconductor optical amplifiers with ASE-enhanced gain recovery,” IEEE J. Sel. Topics Quantum Electron.18,899–908 (2012). [CrossRef]
  8. A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. of Lightw. Technol.23,115–130 (2005). [CrossRef]
  9. R. Hui and A. Mecozzi, “Phase noise of four-wave mixing in semiconductor lasers,” Appl. Phys. Lett.60,2454–2456 (1992). [CrossRef]
  10. T. Tanemura, H. C. Lim, and K. Kikuchi, “Suppression of idler spectral broadening in highly efficient fiber four-wave mixing by binary-phase-shift-keying modulation of pump wave,” IEEE Photon. Technol. Lett.13,1328–1330 (2001). [CrossRef]
  11. T. Tanemura and K. Kikuchi, “Polarization-independent broad-band wavelength conversion using two-pump fiber optical parametric amplification without idler spectral broadening,” IEEE Photon. Technol. Lett.15,1573–1575 (2003). [CrossRef]
  12. M-C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” J. Lightw. Tecnhol.20,469–476 (2002). [CrossRef]
  13. K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Phase-conjugate pump dithering for high-quality idler generation in a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.15,33–35 (2003). [CrossRef]
  14. S. Yamashita and K. Torii, “Cancellation of spectral spread in highly-efficient optical fibre wavelength converters,” Electron. Lett.36,1997–1998 (2000). [CrossRef]
  15. S. Yamashita and M. Tani, “Cancellation of spectral spread in SBS-suppressed fiber wavelength converters using a single phase modulator,” IEEE Photon. Technol. Lett.16,2096–2098 (2004). [CrossRef]
  16. K. Torii and S. Yamashita, “Efficiency improvement of optical fiber wavelength converter without spectral spread using synchronous phase/frequency modulations,” J. Lightwav. Technol.21,1039–1045 (2003). [CrossRef]
  17. S. Yamashita and M. Shahed, “Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread,” IEEE Photon. Technol. Lett.18,1064–1066 (2006). [CrossRef]
  18. Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express20,17610–17619 (2012). [CrossRef] [PubMed]
  19. G. P. Agrawal, Nonlinear Fiber Optics Ch. 9 (Academic Press, San Diego, 2001).
  20. K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “cw threewave mixing in singlemode optical fibers,” J. App. Phys.49,5098–5106 (1978). [CrossRef]
  21. K. Kikuchi, “Characterization of semiconductor-laser phase noise and estimation of bit-error rate performance with low-speed offline digital coherent receivers,” Opt. Express20,5291–5302 (2012). [CrossRef] [PubMed]
  22. T. N. Huynh, L. Nguyen, and L. P. Barry, “Delayed self-heterodyne phase noise measurements with coherent phase modulation detection,” IEEE Photon. Technol. Lett.24,249–251 (2012). [CrossRef]
  23. L. P. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightw. Tecnhol.9,485–493 (1991). [CrossRef]
  24. G. D. Domenico, S. Schilt, L. Tombez, M. C. Stumpf, and P. Thomann, “A simple approach to evaluate the linewidth of a laser from its frequency spectral density,” Proc. 24th European Frequency and Time Forum, Noordwijk (NL), April 13–15 (2010).
  25. T. Kawanishi, T. Sakamoto, M. Tsuchiya, and M. Izutsu, “High carrier suppression double sideband modulation using an integrated LiNbO3 optical modulator,” International Topical Meeting on Microwave Photonics, MWP, (2005).
  26. F. Favre and L. L. Guen, “82 nm of continuous tunability for an external cavity semiconductor laser,” Electron. Lett.27,183–184 (1991). [CrossRef]
  27. V. Crozatier, B. K. Das, G. Baili, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, and W. Sohler, “Highly coherent electronically tunable waveguide extended cavity diode laser,” IEEE Photon. Technol. Lett.18,1527–1529 (2006). [CrossRef]
  28. R. W. Tkach and A. R. Chraplyvy, “Phase noise and linewidth in an InGaAsP DFB laser,” J. Lightwav. Technol.LT-4, 1711–1716 (1986). [CrossRef]
  29. J. O. Wesstrom, G. Sarlet, S. Hammerfeldt, L. Lnndqvist, P. Szabo, and P. J. Rignle, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” OFCTuE2, (2004).
  30. R. T. Watts, R. Rosales, S. Murdoch, F. Lelarge, A. Ramdane, and L. P. Barry, “Mode coherence measurements across a 1.5 THz spectral bandwidth of a passively mode-locked quantum dash laser,” Opt. Lett.37, 1499–1501 (2012). [CrossRef] [PubMed]
  31. A. P. Anthur, R. T. Watts, J. O’Carroll, Deepa Venkitesh, and L. P. Barry, “Effect of phase noise on all-optical wavelength conversion of DQPSK data using FWM,” National Communication Conference, India (2013).
  32. J. Zhou, R. Hui, and N. Caponio, “Spectral linewidth and frequency chirp of four-wave mixing components in optical fibers,” IEEE Photon. Technol. Lett.6,434–436 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited