OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15603–15617

Purcell effect in sub-wavelength semiconductor lasers

Qing Gu, Boris Slutsky, Felipe Vallini, Joseph S. T. Smalley, Maziar P. Nezhad, Newton C. Frateschi, and Yeshaiahu Fainman  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15603-15617 (2013)
http://dx.doi.org/10.1364/OE.21.015603


View Full Text Article

Enhanced HTML    Acrobat PDF (1474 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a formal treatment of the modification of spontaneous emission rate by a cavity (Purcell effect) in sub-wavelength semiconductor lasers. To explicitly express the assumptions upon which our formalism builds, we summarize the results of non-relativistic quantum electrodynamics (QED) and the emitter-field-reservoir model in the quantum theory of damping. Within this model, the emitter-field interaction is modified to the extent that the field mode is modified by its environment. We show that the Purcell factor expressions frequently encountered in the literature are recovered only in the hypothetical condition when the gain medium is replaced by a transparent medium. Further, we argue that to accurately evaluate the Purcell effect, both the passive cavity boundary and the collective effect of all emitters must be included as part of the mode environment.

© 2013 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(270.5580) Quantum optics : Quantum electrodynamics
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 25, 2013
Revised Manuscript: June 13, 2013
Manuscript Accepted: June 13, 2013
Published: June 21, 2013

Citation
Qing Gu, Boris Slutsky, Felipe Vallini, Joseph S. T. Smalley, Maziar P. Nezhad, Newton C. Frateschi, and Yeshaiahu Fainman, "Purcell effect in sub-wavelength semiconductor lasers," Opt. Express 21, 15603-15617 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15603


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Haroche, “New trends in atomic physics,” in Proceedings of the Les Houches Summer School of Theoretical Physics, Session XXXVIII,1982, G. Grynberg and R. Stora, ed. (Elsevier Science, 1984), pp. 195–309.
  2. H. Walther, “Experiments on cavity quantum electrodynamics,” Phys. Rep.219(3-6), 263–281 (1992). [CrossRef]
  3. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  4. J. M. Gérard and B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol.17(11), 2089–2095 (1999). [CrossRef]
  5. P. Yu, P. Bhattacharya, and J. Cheng, “Enhanced spontaneous emission from InAs/GaAs self-organized quantum dots in a GaAs photonic-crystal-based microcavity,” J. Appl. Phys.93(10), 6173–6176 (2003). [CrossRef]
  6. T. Baba and D. Sano, “Low-threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron.9(5), 1340–1346 (2003). [CrossRef]
  7. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007). [CrossRef]
  8. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010). [CrossRef]
  9. K. Ding and C. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light: Sci. Appl.1(7), e20 (2012). [CrossRef]
  10. Y. Xu, J. Vučković, R. Lee, O. Painter, A. Scherer, and A. Yariv, “Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity,” J. Opt. Soc. Am. B16(3), 465–474 (1999). [CrossRef]
  11. H. Y. Ryu and M. Notomi, “Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity,” Opt. Lett.28(23), 2390–2392 (2003). [CrossRef] [PubMed]
  12. T. Suhr, N. Gregersen, K. Yvind, and J. Mørk, “Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission,” Opt. Express18(11), 11230–11241 (2010). [CrossRef] [PubMed]
  13. C. A. Ni and S. L. Chuang, “Theory of high-speed nanolasers and nanoLEDs,” Opt. Express20(15), 16450–16470 (2012). [CrossRef]
  14. A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express18(10), 10230–10246 (2010). [CrossRef] [PubMed]
  15. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics (Wiley, 1989).
  16. J. J. Sakurai, Modern quantum mechanics (Addison-Wesley, 1994).
  17. R. J. Glauber and M. Lewenstein, “Quantum optics of dielectric media,” Phys. Rev. A43(1), 467–491 (1991). [CrossRef] [PubMed]
  18. S. W. Chang and S. L. Chuang, “Normal modes for plasmonic nanolasers with dispersive and inhomogeneous media,” Opt. Lett.34(1), 91–93 (2009). [CrossRef] [PubMed]
  19. S. W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron.45(8), 1014–1023 (2009). [CrossRef]
  20. M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge University, 1997).
  21. M. Asada, “Intraband relaxation time in quantum-well lasers,” IEEE J. Quantum Electron.25(9), 2019–2026 (1989). [CrossRef]
  22. R. J. Glauber, Optical Coherence and Photon Statistics” in Quantum Optics and Electronics (Les Houches, 1965).
  23. L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits (John Wiley & Sons, inc., 1995).
  24. G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A44(1), 669–681 (1991). [CrossRef] [PubMed]
  25. K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature450(7171), 862–865 (2007). [CrossRef] [PubMed]
  26. G. Khitrova, H. Gibbs, M. Kira, S. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys.2(2), 81–90 (2006). [CrossRef]
  27. V. Weisskopf and E. Wigner, “Calculation of the natural brightness of spectral lines on the basis of Dirac’s theory,” Z. Phys.63, 54–73 (1930). [CrossRef]
  28. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2007).
  29. A. E. Siegman, An introduction to lasers and masers (McGraw Hill, 1971).
  30. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron.25(11), 2297–2306 (1989). [CrossRef]
  31. H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer-Verlag, 1999).
  32. T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett.85(18), 3989–3991 (2004). [CrossRef]
  33. H. Iwase, D. Englund, and J. Vucković, “Analysis of the Purcell effect in photonic and plasmonic crystals with losses,” Opt. Express18(16), 16546–16560 (2010). [CrossRef] [PubMed]
  34. M. Fujita, A. Sakai, and T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron.5(3), 673–681 (1999). [CrossRef]
  35. H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2(7), 484–488 (2006). [CrossRef]
  36. M. Glauser, G. Rossbach, G. Cosendey, J. Levrat, M. Cobet, J. Carlin, J. Besbas, M. Gallart, P. Gilliot, R. Butté, and N. Grandjean, “Investigation of InGaN/GaN quantum wells for polariton laser diodes,” Phys. Status Solidi C9(5), 1325–1329 (2012). [CrossRef]
  37. M. Yamada and Y. Suematsu, “Analysis of gain suppression in undoped injection lasers,” J. Appl. Phys.52(4), 2653–2664 (1981). [CrossRef]
  38. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature482(7384), 204–207 (2012). [CrossRef] [PubMed]
  39. M. Yamanishi and Y. Lee, “Phase dampings of optical dipole moments and gain spectra in semiconductor lasers,” IEEE J. Quantum Electron.23(4), 367–370 (1987). [CrossRef]
  40. S. R. Chinn, P. Zory, and A. R. Reisinger, “A model for GRIN-SCH-SQW diode lasers,” IEEE J. Quantum Electron.24(11), 2191–2214 (1988). [CrossRef]
  41. B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage, and D. S. Katzer, “Enhanced radiative recombination of free excitons in GaAs quantum wells,” Phys. Rev. Lett.67(17), 2355–2358 (1991). [CrossRef] [PubMed]
  42. W. W. Chow and S. W. Koch, Semiconductor-laser fundamentals (Springer, 1999).
  43. D. Martín-Cano, A. González-Tudela, L. Martín-Moreno, F. J. García-Vidal, C. Tejedor, and E. Moreno, “Dissipation-driven generation of two-qubit entanglement mediated by plasmonic waveguides,” Phys. Rev. B84(23), 235306 (2011). [CrossRef]
  44. W. Kowalsky, A. Schlachetzki, and F. Fiedler, “Near‐band‐gap absorption of InGaAsP at 1.3 μm wavelength,” Phys. Status Solidi A68(1), 153–158 (1981). [CrossRef]
  45. R. H. Groeneveld, R. Sprik, and A. Lagendijk, “Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals,” Phys. Rev. B Condens. Matter45(9), 5079–5082 (1992). [CrossRef] [PubMed]
  46. W. S. Fann, R. Storz, H. W. Tom, and J. Bokor, “Electron thermalization in gold,” Phys. Rev. B Condens. Matter46(20), 13592–13595 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited