OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15618–15626

Quantum entangling gates using the strong coupling between two optical emitters and nanowire surface plasmons

J. Yang, G. W. Lin, Y. P. Niu, and S. Q. Gong  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15618-15626 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (891 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a scheme to generate quantum entangling gate using one-dimensional surface plasmon waveguide. The protocol is based on the detection of the transmission spectrum of the single optical plasmons passing through two separate three-level emitters on metallic nanowire waveguide. It is shown that the low efficiency in direct detection of the single photon can be avoided by repeating the measurement of the transmission spectrum.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: April 29, 2013
Revised Manuscript: May 25, 2013
Manuscript Accepted: June 6, 2013
Published: June 21, 2013

J. Yang, G. W. Lin, Y. P. Niu, and S. Q. Gong, "Quantum entangling gates using the strong coupling between two optical emitters and nanowire surface plasmons," Opt. Express 21, 15618-15626 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010). [CrossRef]
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  4. J. Grandidier, S. Massenot, G. C. Francs, A. Bouhelier, J. C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzáez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B78(24), 245419 (2008). [CrossRef]
  5. R. F. Oulton, V. J. Sorger, D. A. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. photonics2(8), 496–500 (2008). [CrossRef]
  6. J. Yang, Q. Cao, and C. Zhou, “An explicit formula for metal wire plasmon of terahertz wave,” Opt. Express17, 20806–20815 (2009). [CrossRef] [PubMed]
  7. J. Yang, Q. Cao, and C. Zhou, “An analytical recurrence formula for the zero-order metal wire plasmon of terahertz wave,” J. Opt. Soc. Am. A27, 1608–1612 (2010). [CrossRef]
  8. J. Yang, Q. Cao, and C. Zhou, “Theory for terahertz plasmons of metallic nanowires with sub-skin-depth diameters,” Opt. Express18, 18550–18557 (2010). [CrossRef] [PubMed]
  9. H. Liang, S. Ruan, and M. Zhang, “Terahertz surface wave propagation and focusing on conical metal wires,” Opt. Express16, 18241–18248 (2008). [CrossRef] [PubMed]
  10. M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett.90, 061111 (2007). [CrossRef]
  11. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97, 053002 (2006). [CrossRef] [PubMed]
  12. Z. Jacob and V. M. Shalaev, “plasmonics goes quantum,” Science334, 755–756 (2011). [CrossRef]
  13. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B76, 035420 (2007). [CrossRef]
  14. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450, 402–406 (2007). [CrossRef] [PubMed]
  15. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Physics3, 807–812 (2007). [CrossRef]
  16. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienaa, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett.7, 2784–2788 (2007). [CrossRef] [PubMed]
  17. G. Y. Chen, Y. N. Chen, and D. S. Chuu, “Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire,” Opt. Lett.33, 2212–2214 (2008). [CrossRef] [PubMed]
  18. Z. J. Yang, N. C. Kim, J. B. Li, M. T. Chen, S. D. Liu, Z. H. Hao, and Q. Q. Wang, “Surface plasmons amplifications in single Ag nanoring,” Opt. Express18, 4006–4011 (2010). [CrossRef] [PubMed]
  19. A. G. Tudela, F. J. Rodriguez, L. Quiroga, and C. Tejedor, “Dissipative dynamics of a solid-state qubit coupled to surface plasmons: From non-Markov to Markov regimes,” Phys. Rev. B82, 115334 (2010). [CrossRef]
  20. D. Dzsotjan, A. S. Sørensen, and M. Fleischhauer, “Quantum emitters coupled to surface plasmons of a nanowire: A Green’s function approach,” Phys. Rev. B82, 075427 (2010). [CrossRef]
  21. W. Chen, G. Y. Chen, and Y. N. Chen, “Coherent transport of nanowire surface plasmons coupled to quantum dots,” Opt. Express18, 10360–10368 (2010). [CrossRef] [PubMed]
  22. A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett.106, 096801 (2011). [CrossRef] [PubMed]
  23. J. Li and R. Yu, “Single-plasmon scattering grating using nanowire surface plasmon coupled to nanodiamond nitrogen-vacancy center,” Opt. Express19, 20991–21002 (2011). [CrossRef] [PubMed]
  24. D. Witthaut and A. S. Sørensen, “Photon scattering by a three-level emitter in a one-dimensional waveguide,” New Journal of Physics12, 043052 (2012). [CrossRef]
  25. Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett.109, 160504 (2012). [CrossRef] [PubMed]
  26. M. A. Nielsen and I. A. Chuang, Quantum Computing and Quantum Information (Cambridge, 2000).
  27. S. Haroche and J. M. Raimond, Exploring the Quantum (Oxford, 2006). [CrossRef]
  28. A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett.106, 020501 (2011). [CrossRef] [PubMed]
  29. L. Slodickačka, G. Hétet, N. Röck, P. Schindler, M. Hennrich, and R. Blatt, “Atom-atom entanglement by single-photon detection,” Phys. Rev. Lett.110, 083603 (2013). [CrossRef] [PubMed]
  30. C. Cabrillo, J. I. Cirac, P. García-Fernández, and P. Zoller, “Creation of entangled states of distant atoms by interference,” Phys. Rev. A59, 2 (1999). [CrossRef]
  31. Y. L. Lim, A. Beige, and L. C. Kwek, “Repeat-until-success linear optics distributed quantum computing” Phys. Rev. Lett.95, 030305 (2005). [CrossRef]
  32. J. T. Shen and S. Fan, “Coherent photon transport from spontaneous emission in one-dimensional waveguide coupled to a two-level system,” Opt. Lett.30, 2001–2003 (2005). [CrossRef] [PubMed]
  33. J. T. Shen and S. Fan, “Theory of single-photon transport in a single mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A79, 023837 (2009). [CrossRef]
  34. M. P. A. Jones, J. Beugnon, A. Gaëtan, J. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A75, 040301(R) (2007). [CrossRef]
  35. H. S. Nguyen, G. Sallen, C. Voisin, Ph. Roussignol, C. Diederichs, and G. Cassabois, “Ultra-coherent single photon source,” Appl. Phys. Lett.99, 26 (2011). [CrossRef]
  36. H. Zhang, R. McConnell, S. Ćuk, Q. Lin, M. H. S. Smith, I. D. Leroux, and V. Vuletić, “Collective state measurement of mesoscopic ensembles with single-atom resolution,” Phys. Rev. Lett.109, 133603 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited