OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15634–15644

Nonlinear modeling of waveguide photodetectors

Molly Piels, Anand Ramaswamy, and John E. Bowers  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15634-15644 (2013)
http://dx.doi.org/10.1364/OE.21.015634


View Full Text Article

Enhanced HTML    Acrobat PDF (1903 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new method of simulating photodiode nonlinearities is proposed. This model includes the effects of non-uniform absorption in three dimensions, self-heating, and is compatible with circuit components defined in the frequency domain, such as transmission lines. The saturated output power and third order output intercept points of two different waveguide photodiodes are simulated, with excellent agreement between measurement and theory. The technique is then used to provide guidance for the future design of linear waveguide-based photodetectors.

© 2013 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(230.5170) Optical devices : Photodiodes
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Detectors

History
Original Manuscript: April 30, 2013
Revised Manuscript: June 8, 2013
Manuscript Accepted: June 11, 2013
Published: June 21, 2013

Citation
Molly Piels, Anand Ramaswamy, and John E. Bowers, "Nonlinear modeling of waveguide photodetectors," Opt. Express 21, 15634-15644 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15634


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol.14(1), 1484–1496 (1996).
  2. Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and modeling nonlinear intermodulation distortions in modified uni-traveling carrier photodiodes,” IEEE J. Quantum Electron.47(10), 1312–1319 (2011). [CrossRef]
  3. M. Dentan and B. de Cremoux, “Numerical simulation of the nonlinear response of a p-i-n photodiode under high illumination,” J. Lightwave Technol.8(8), 1137–1144 (1990). [CrossRef]
  4. J. Harari, F. Journet, O. Rabii, G. Jin, J. P. Vilcot, and D. Decoster, “Modeling of waveguide PIN photodetectors under very high optical power,” IEEE Trans. Microw. Theory Tech.432304 (1995).
  5. A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Linearity of modified uni-traveling carrier photodiodes,” J. Lightwave Technol.26(15), 2373–2378 (2008). [CrossRef]
  6. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol.24(12), 4628–4641 (2006). [CrossRef]
  7. S. A. Malyshev, A. L. Chizh, and Y. G. Vasileuski, “Mixed device/circuit model of the high-speed p-i-n photodiode,”in Proceedings of the 5th International Conference on Numerical Simulation of Optoelectronic Devices(Institute of Electrical and Electronic Engineers, New York, 2005), pp. 45–46. [CrossRef]
  8. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express15(21), 13965–13971 (2007). [CrossRef] [PubMed]
  9. A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power Silicon-Germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech.58(11), 3336–3343 (2010). [CrossRef]
  10. A. Beling, Y. Fu, Z. Li, H. Pan, Q. Zhou, A. Cross, M. Piels, J. Peters, J. E. Bowers, and J. C. Campbell, “Modified uni-traveling carrier photodiodes heterogeneously integrated on Silicon-on-insulator (SOI),” in Conference on Integrated Photonics Research and Silicon Nanophotonics, (Optical Society of America, 2012), paper IM2A.2. [CrossRef]
  11. K. Giboney, J. E. Bowers, and M. J. Rodwell, “Travelling-wave photodetectors,” in IEEE MTT-S Microwave Symposium Digest(Institute of Electrical and Electronic Engineers, New York, 1995), pp. 159–162.
  12. S. Maas, Nonlinear Microwave and RF Circuits (Artech House, 1997).
  13. G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiode S-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett.12(10), 378–380 (2002). [CrossRef]
  14. R. Lewen, S. Irmscher, and U. Eriksson, “Microwave CAD circuit modeling of a traveling-wave electroabsorption modulator,” IEEE Trans. Microw. Theory Tech.51(4), 1117–1128 (2003). [CrossRef]
  15. S. Adachi, Handbook on Physical Properties of Semiconductors vol. 1 (Springer-Verlag, 2004), Chap. 3.
  16. U. K. Mishra and J. S. Singh, Semiconductor Device Physics and Design (Springer 2008).
  17. M. Piels, “Si/Ge photodiodes for coherent and analog communication,” Ph.D. Dissertation, Dept. Elect. and Comp. Eng., Univ. California, Santa Barbara, 2013.
  18. T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAsuni-traveling-carrier photodiodes,” IEICE Trans. Electron.E83–C, 938–949 (2000).
  19. M. Piels, A. Ramaswamy, J. E. Bowers, T. Yin, D. Kendig, and A. Shakouri, “Three-dimensional thermal analysis of a waveguide Ge/Si photodiode,” in Conference on Integrated Photonics Research and Silicon Nanophotonics, (Optical Society of America, 2010), paper ITuA5. [CrossRef]
  20. Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J. E. Bowers, and J. C. Campbell, “High-power and high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express19(26), B385–B390 (2011). [CrossRef] [PubMed]
  21. K. J. Williams and R. D. Esman, “Design considerations for high-current photodetectors,” J. Lightwave Technol.17(8), 1443–1454 (1999). [CrossRef]
  22. Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010). [CrossRef]
  23. J. Liu, D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si(100),” Phys. Rev. B70(15), 155309 (2004). [CrossRef]
  24. H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and integration technology for Silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron.•••, 17671–17688 (2011).
  25. A. Beling, A. S. Cross, M. Piels, J. Peters, Y. Fu, Q. Zhou, J. E. Bowers, and J. C. Campbell, “High-power high-speed waveguide photodiodes and photodiode arrays heterogeneously integrated on Silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper OM2J.1. [CrossRef]
  26. J. Klamkin, S. M. Madison, D. C. Oakley, A. Napoleone, F. J. O’Donnell, M. Sheehan, L. J. Missaggia, J. M. Caissie, J. J. Plant, and P. W. Juodawlkis, “Uni-traveling-carrier variable confinement waveguide photodiodes,” Opt. Express19(11), 10199–10205 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited