OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15654–15663

Atmospheric corrections of passive microwave data for estimating land surface temperature

Zeng-Lin Liu, Hua Wu, Bo-Hui Tang, Shi Qiu, and Zhao-Liang Li  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15654-15663 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (976 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quantitative analysis of the atmospheric effects on observations made by the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) has been performed. The differences between observed brightness temperatures at the top of the atmosphere and at the bottom of the atmosphere were analyzed using a database of simulated observations, which were configured to replicate AMSR-E data. The differences between observed brightness temperatures at the top of the atmosphere and land surface-emitted brightness temperatures were also computed. Quantitative results show that the atmosphere has different effects on brightness temperatures in different AMSR-E channels. Atmospheric effects can be neglected at 6.925 and 10.65 GHz, when the standard deviation is less than 1 K. However, at other frequencies and polarizations, atmospheric effects on observations should not be neglected. An atmospheric correction algorithm was developed at 18.7 GHz vertical polarization, based on the classic split-window algorithm used in thermal remote sensing. Land surface emission can be estimated with RMSE = 0.99 K using the proposed method. Using the known land surface emissivity, Land Surface Temperature (LST) can be retrieved. The RMSE of retrieved LST is 1.17 K using the simulated data.

© 2013 OSA

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.6370) Spectroscopy : Spectroscopy, microwave
(010.1285) Atmospheric and oceanic optics : Atmospheric correction
(280.4991) Remote sensing and sensors : Passive remote sensing

ToC Category:
Remote Sensing

Original Manuscript: May 22, 2013
Revised Manuscript: June 17, 2013
Manuscript Accepted: June 17, 2013
Published: June 21, 2013

Zeng-Lin Liu, Hua Wu, Bo-Hui Tang, Shi Qiu, and Zhao-Liang Li, "Atmospheric corrections of passive microwave data for estimating land surface temperature," Opt. Express 21, 15654-15663 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F.  Nerry, M. P.  Stoll, A.  Malaplate, “Multi temporal regression method for mid infrared [3-5µm] emissivity outdoor measurements,” Opt. Express 12(26), 6574–6588 (2004). [CrossRef] [PubMed]
  2. X. Y.  OuYang, N.  Wang, H.  Wu, Z.-L.  Li, “Errors analysis on temperature and emissivity determination from hyperspectral thermal infrared data,” Opt. Express 18(2), 544–550 (2010). [CrossRef] [PubMed]
  3. Z.-L.  Li, B.-H.  Tang, H.  Wu, H.  Ren, G. J.  Yan, Z.  Wan, I. F.  Triggo, J. A.  Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013). [CrossRef]
  4. Z.-L.  Li, H.  Wu, N.  Wang, S.  Qiu, J. A.  Sobrino, Z.  Wan, B.-H.  Tang, G. J.  Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9-10), 3084–3127 (2013). [CrossRef]
  5. C.  Prigent, W. B.  Rossow, E.  Matthews, “Microwave land surface emissivities estimated from SSM/I observations,” J. Geophys. Res. 102(D18), 21867–21890 (1997). [CrossRef]
  6. F.  Karbou, C.  Prigent, L.  Eymard, J. R.  Pardo, “Microwave land emissivity calculations using AMSU measurements,” IEEE Trans. Geosci. Remote 43(5), 948–959 (2005). [CrossRef]
  7. J. B. Snider, E. R. Westwater, and L. S. Fedor, “Radiometric correction for atmospheric effects in surface sensing from aircraft and satellites,” in Passive Microwave Remoter Sensing of Land-Atmosphere Interactions, E.D. B.J. Choudhury, Y. H. Kerr, and P. Pampaloni, ed. (VSP, Zeist, Netherlands, 1994).
  8. R. Fuhrhop and C. Simmer, MWMOD User Manual, Version 1.12 (Institut für Meereskunde, Kiel, Germany, 1998).
  9. B. J.  Choudhury, T. J.  Schmugge, A.  Chang, R. W.  Newton, “Effect of surface roughness on the microwave emission from soils,” J. Geophys. Res. 84(C9), 5699–5706 (1979). [CrossRef]
  10. J. R.  Wang, B. J.  Choudhury, “Remote sensing of soil moisture content over bare fields at 1.4 GHz frequency,” J. Geophys. Res. 86(C6), 5277–5282 (1981). [CrossRef]
  11. A. K. Fung, Microwave Scattering and Emission Models and Their Applications (Artech House, Boston, 1994).
  12. K. S.  Chen, T. D.  Wu, L.  Tsang, Q.  Li, J. C.  Shi, A. K.  Fung, “Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations,” IEEE Trans. Geosci. Remote 41(1), 90–101 (2003). [CrossRef]
  13. F. Z.  Weng, N. C.  Grody, “Physical retrieval of land surface temperature using the special sensor microwave imager,” J. Geophys. Res. 103(D8), 8839–8848 (1998). [CrossRef]
  14. F.  Becker, Z.-L.  Li, “Towards a local split window method over land surfaces,” Int. J. Remote Sens. 11(3), 369–393 (1990). [CrossRef]
  15. E. G.  Njoku, L.  Li, “Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz,” IEEE Trans. Geosci. Remote 37(1), 79–93 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited