OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15676–15685

A PN-type quantum barrier for InGaN/GaN light emitting diodes

Zi-Hui Zhang, Swee Tiam Tan, Yun Ji, Wei Liu, Zhengang Ju, Zabu Kyaw, Xiao Wei Sun, and Hilmi Volkan Demir  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15676-15685 (2013)
http://dx.doi.org/10.1364/OE.21.015676


View Full Text Article

Enhanced HTML    Acrobat PDF (1867 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, InGaN/GaN light-emitting diodes (LEDs) with PN-type quantum barriers are comparatively studied both theoretically and experimentally. A strong enhancement in the optical output power is obtained from the proposed device. The improved performance is attributed to the screening of the quantum confined Stark effect (QCSE) in the quantum wells and improved hole transport across the active region. In addition, the enhanced overall radiative recombination rates in the multiple quantum wells and increased effective energy barrier height in the conduction band has substantially suppressed the electron leakage from the active region. Furthermore, the electrical conductivity in the proposed devices is improved. The numerical and experimental results are in excellent agreement and indicate that the PN-type quantum barriers hold great promise for high-performance InGaN/GaN LEDs.

© 2013 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(230.3670) Optical devices : Light-emitting diodes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Optical Devices

History
Original Manuscript: April 2, 2013
Revised Manuscript: June 12, 2013
Manuscript Accepted: June 13, 2013
Published: June 24, 2013

Citation
Zi-Hui Zhang, Swee Tiam Tan, Yun Ji, Wei Liu, Zhengang Ju, Zabu Kyaw, Xiao Wei Sun, and Hilmi Volkan Demir, "A PN-type quantum barrier for InGaN/GaN light emitting diodes," Opt. Express 21, 15676-15685 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15676


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys.31(Part 2, No. 2B2B), 139–142 (1992). [CrossRef]
  2. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron-beam irradiation (LEEBI),” Jpn. J. Appl. Phys.28(12), L2112–L2114 (1989). [CrossRef]
  3. S. T. Tan, X. W. Sun, H. V. Demir, and S. P. DenBaars, “Advances in the LED materials and architectures for energy-saving solid-state lighting toward “lighting revolution”,” IEEE Photon. J.4(2), 613–619 (2012). [CrossRef]
  4. M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009). [CrossRef]
  5. N. Tansu, H. Zhao, G. Liu, X. H. Li, J. Zhang, H. Tong, and Y. K. Ee, “III-nitride photonics,” IEEE Photon. J.2(2), 241–248 (2010). [CrossRef]
  6. C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett.99(17), 171106 (2011). [CrossRef]
  7. M. C. Tsai, S. H. Yen, and Y. K. Kuo, “Carrier transportation and internal quantum efficiency of blue inGaN light-emitting diodes with p-doped barriers,” IEEE Photon. Technol. Lett.22(6), 374–376 (2010). [CrossRef]
  8. S. J. Park, S. H. Han, C. Y. Cho, S. J. Lee, T. Y. Park, T. H. Kim, S. H. Park, S. Won Kang, J. Won Kim, and Y. C. Kim, “Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes,” Appl. Phys. Lett.96(5), 051113 (2010). [CrossRef]
  9. M.-C. Tsai, S.-H. Yen, Y.-C. Lu, and Y.-K. Kuo, “Numerical study of blue InGaN light-emitting diodes with varied barrier thicknesses,” IEEE Photon. Technol. Lett.23(2), 76–78 (2011). [CrossRef]
  10. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett.91(18), 183507 (2007). [CrossRef]
  11. S. Choi, M.-H. Ji, J. Kim, H. J. Kim, M. M. Satter, P. D. Yoder, J.-H. Ryou, R. D. Dupuis, A. M. Fischer, and F. A. Ponce, “Efficiency droop due to electron spill-over and limited hole injection in III-nitride visible light-emitting diodes employing lattice-matched InAlN electron blocking layers,” Appl. Phys. Lett.101(16), 161110 (2012). [CrossRef]
  12. H. P. Zhao, G. Y. Liu, R. A. Arif, and N. Tansu, “Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes,” Solid-State Electron.54(10), 1119–1124 (2010). [CrossRef]
  13. G. Liu, J. Zhang, C. K. Tan, and N. Tansu, “Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes,” IEEE Photon. J.5(2), 220101 (2013). [CrossRef]
  14. H. Zhao, G. Liu, J. Zhang, R. A. Arif, and N. Tansu, “Analysis of internal quantum efficiency and current injection efficiency in III-nitride light-emitting diodes,” J. Display Technol.9(4), 212–225 (2013). [CrossRef]
  15. S.-H. Park and S.-L. Chuang, “Comparison of zinc-blende and wurtzite GaN semiconductors with spontaneous polarization and piezoelectric field effects,” J. Appl. Phys.87(1), 353–364 (2000). [CrossRef]
  16. R. A. Arif, Y.-K. Ee, and N. Tansu, “Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes,” Appl. Phys. Lett.91(9), 091110 (2007). [CrossRef]
  17. J.-H. Ryou, P. D. Yoder, J. Liu, Z. Lochner, K. Hyunsoo, S. Choi, H.-J. Kim, and R. D. Dupuis, “Control of quantum-confined Stark effect in InGaN-based quantum wells,” IEEE J. Sel. Top. Quantum Electron.15(4), 1080–1091 (2009). [CrossRef]
  18. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]
  19. S. H. Park, D. Ahn, B. H. Koo, and J. E. Oh, “Optical gain improvement in type-II InGaN/GaNSb/GaN quantum well structures composed of InGaN/and GaNSb layers,” Appl. Phys. Lett.96(5), 051106 (2010). [CrossRef]
  20. R. A. Arif, H. Zhao, and N. Tansu, “Type-II InGaN-GaNAs quantum wells for lasers applications,” Appl. Phys. Lett.92(1), 011104 (2008). [CrossRef]
  21. H. Zhao, R. A. Arif, and N. Tansu, “Self-consistent gain analysis of type-II `W' InGaN–GaNAs quantum well lasers,” J. Appl. Phys.104(4), 043104 (2008). [CrossRef]
  22. J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110(11), 113110 (2011). [CrossRef]
  23. T. Deguchi, A. Shikanai, K. Torii, T. Sota, S. Chichibu, and S. Nakamura, “Luminescence spectra from InGaN multiquantum wells heavily doped with Si,” Appl. Phys. Lett.72(25), 3329–3331 (1998). [CrossRef]
  24. J. H. Ryou, J. Limb, W. Lee, J. P. Liu, Z. Lochner, D. W. Yoo, and R. D. Dupuis, “Effect of silicon doping in the quantum-well barriers on the electrical and optical properties of visible green light-emitting diodes,” IEEE Photon. Technol. Lett.20(21), 1769–1771 (2008). [CrossRef]
  25. Z.-H. Zhang, S. T. Tan, Z. G. Ju, W. Liu, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the effect of step-doped quantum barriers in InGaN/GaN light emitting diodes,” J. Display Technol.9(4), 226–233 (2013). [CrossRef]
  26. Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett.100(12), 123503 (2012). [CrossRef]
  27. H. Xing, D. S. Green, H. Yu, T. Mates, P. Kozodoy, S. Keller, S. P. Denbaars, and U. K. Mishra, “Memory effect and redistribution of Mg into sequentially regrown GaN layer by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys.42(1), 50–53 (2003). [CrossRef]
  28. L. Lahourcade, J. Pernot, A. Wirthmuller, M. P. Chauvat, P. Ruterana, A. Laufer, M. Eickhoff, and E. Monroy, “Mg doping and its effect on the semipolar GaN(11-22) growth kinetics,” Appl. Phys. Lett.95(17), 171908 (2009). [CrossRef]
  29. H. Zhao, R. A. Arif, Y. K. Ee, and N. Tansu, “Self-consistent analysis of strain-compensated InGaN-AlGaN quantum wells for lasers and light-emitting diodes,” IEEE J. Quantum Electron.45(1), 66–78 (2009). [CrossRef]
  30. J. Piprek, “Efficiency droop in nitride-based light-emitting diodes,” Phys. Status Solid. A-Appl. Mater. Sci.207(10), 2217–2225 (2010).
  31. V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett.80(7), 1204–1206 (2002). [CrossRef]
  32. K. T. Delaney, P. Rinke, and C. G. Van De Walle, “Auger recombination rates in nitrides from first principles,” Appl. Phys. Lett.94(19), 191109 (2009). [CrossRef]
  33. M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, “A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes,” J. Appl. Phys.106(11), 114508 (2009). [CrossRef]
  34. I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys.94(6), 3675–3696 (2003). [CrossRef]
  35. Z.-H. Zhang, S. T. Tan, W. Liu, Z. G. Ju, K. Zheng, Z. Kyaw, Y. Ji, N. Hasanov, X. W. Sun, and H. V. Demir, “Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current-spreading layer,” Opt. Express21(4), 4958–4969 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited