OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15698–15705

All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics

Xiyuan Li, Wei Li, Xin Guo, Jingyi Lou, and Limin Tong  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15698-15705 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3335 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 106 and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.

© 2013 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(130.6010) Integrated optics : Sensors
(230.0230) Optical devices : Optical devices
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

Original Manuscript: April 19, 2013
Revised Manuscript: June 13, 2013
Manuscript Accepted: June 17, 2013
Published: June 24, 2013

Xiyuan Li, Wei Li, Xin Guo, Jingyi Lou, and Limin Tong, "All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics," Opt. Express 21, 15698-15705 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge Univ. Press, 2000).
  2. H. Murata, Handbook of Optical Fibers and Cables 2nd ed. (Marcel Dekker, 1996).
  3. D. K. Mynbaev and L. L. Scheiner, Fiber-Optic Communications Technology (Prentice Hall, 2001).
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  5. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007).
  6. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  7. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  8. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  9. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem.12(3), 213–220 (1993). [CrossRef]
  10. C. Ronot-Trioli, A. Trouillet, C. Veillas, and H. Gagnaire, “Monochromatic excitation of surface plasmon resonance in an optical-fibre refractive-index sensor,” Sens. Actuators A Phys.54(1–3), 589–593 (1996). [CrossRef]
  11. R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem.74(1–3), 106–111 (2001). [CrossRef]
  12. X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009). [CrossRef] [PubMed]
  13. C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett.100(4), 041104 (2012). [CrossRef]
  14. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J.7(8), 1118–1129 (2007). [CrossRef]
  15. N. Liu, Z. P. Li, and H. X. Xu, “Polarization-dependent study on propagating surface plasmons in silver nanowires launched by a near-field scanning optical fiber tip,” Small8(17), 2641–2646 (2012). [CrossRef] [PubMed]
  16. W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A75(6), 063822 (2007). [CrossRef]
  17. N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun.253(1–3), 118–124 (2005). [CrossRef]
  18. Y. B. Lin, J. P. Guo, and R. G. Lindquist, “Demonstration of an ultra-wideband optical fiber inline polarizer with metal nano-grid on the fiber tip,” Opt. Express17(20), 17849–17854 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-20-17849 . [CrossRef] [PubMed]
  19. Q. Zhang, C. Y. Xue, Y. L. Yuan, J. Y. Lee, D. Sun, and J. J. Xiong, “Fiber surface modification technology for fiber-optic localized surface plasmon resonance biosensors,” Sensors (Basel)12(3), 2729–2741 (2012). [CrossRef] [PubMed]
  20. X. W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett.9(11), 3756–3761 (2009). [CrossRef] [PubMed]
  21. R. X. Yan, P. Pausauskie, J. X. Huang, and P. D. Yang, “Direct photonic-plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. U.S.A.106(50), 21045–21050 (2009). [CrossRef] [PubMed]
  22. C. H. Dong, X. F. Ren, R. Yang, J. Y. Duan, J. G. Guan, G. C. Guo, and G. P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett.95(22), 221109 (2009). [CrossRef]
  23. Y. G. Sun, Y. D. Yin, B. T. Mayers, T. Herricks, and Y. N. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with Ethylene Glycol in the presence of seeds and Poly (Vinyl Pyrrolidone),” Chem. Mater.14(11), 4736–4745 (2002). [CrossRef]
  24. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003). [CrossRef] [PubMed]
  25. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005). [CrossRef] [PubMed]
  26. Y. G. Ma, X. Y. Li, H. K. Yu, L. M. Tong, Y. Gu, and Q. H. Gong, “Direct measurement of propagation losses in silver nanowires,” Opt. Lett.35(8), 1160–1162 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-35-8-1160 . [CrossRef] [PubMed]
  27. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics3(7), 388–394 (2009). [CrossRef]
  28. R. X. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. D. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011). [CrossRef] [PubMed]
  29. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett.6(8), 1822–1826 (2006). [CrossRef] [PubMed]
  30. M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett.10(3), 891–895 (2010). [CrossRef] [PubMed]
  31. Q. J. Lu, D. R. Chen, G. Z. Wu, B. J. Peng, and J. C. Xu, “A hybrid plasmonic microresonator with high quality factor and small mode volume,” J. Opt.14(12), 125503 (2012). [CrossRef]
  32. Y. F. Xiao, B. B. Li, X. Jiang, X. Y. Hu, Y. Li, and Q. H. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. B43(3), 035402 (2010). [CrossRef]
  33. N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, and M. Kawachi, “Silica-based integrated optic Mach-Zehnder Multi/Demultiplexer family with channel spacing of 0.01-250 nm,” IEEE J. Sel. Areas Comm.8(6), 1120–1127 (1990). [CrossRef]
  34. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic Publishers, 2000).
  35. B. J. Murray, E. C. Walter, and R. M. Penner, “Amine vapor sensing with silver mesowires,” Nano Lett.4(4), 665–670 (2004). [CrossRef]
  36. F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett.8(9), 2757–2761 (2008). [CrossRef] [PubMed]
  37. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007). [CrossRef]
  38. A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics1(3), 153–155 (2007). [CrossRef]
  39. X. Guo, Y. G. Ma, Y. P. Wang, and L. M. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser & Photon. Rev. 2013, doi: . [CrossRef]
  40. H. Wei, Z. X. Wang, X. R. Tian, M. Käll, and H. X. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun2, 387 (2011). [CrossRef] [PubMed]
  41. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007). [CrossRef]
  42. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.78(12), 3859–3874 (2006). [CrossRef] [PubMed]
  43. N. P. de Leon, M. D. Lukin, and H. Park, “Quantum plasmonic circuits,” IEEE J. Sel. Top. Quantum Electron.18(6), 1781–1791 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited