OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15734–15746

Novel 3D SEM Moiré method for micro height measurement

Chuanwei Li, Zhanwei Liu, Huimin Xie, and Dan Wu  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15734-15746 (2013)
http://dx.doi.org/10.1364/OE.21.015734


View Full Text Article

Enhanced HTML    Acrobat PDF (1974 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: A 3D SEM Moiré Method (SMM) is proposed in this investigation for the first time for 3D shape measurement with nano-scale sensitivity. The geometric model of the 3D SMM has been theoretically established, combining the stereovision technology in an SEM with the existing principles of in-plane SMM. The Virtual Projection Fringe (VPF) generated under different conditions has been analyzed for 3D reconstructions. Two typical applications have been used to experimentally validate the theoretical model. Experimental results, with the height measurement sensitivity less than 10nm, agree well with the theoretical model we proposed. The uncertainty analysis for the method has also been performed by other auxiliary measurements.

© 2013 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(120.4120) Instrumentation, measurement, and metrology : Moire' techniques
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 1, 2013
Revised Manuscript: June 11, 2013
Manuscript Accepted: June 11, 2013
Published: June 24, 2013

Citation
Chuanwei Li, Zhanwei Liu, Huimin Xie, and Dan Wu, "Novel 3D SEM Moiré method for micro height measurement," Opt. Express 21, 15734-15746 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15734


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Post, B. Han, and P. Ifju, High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials (Springer-Verlag, 1994), Chap.4.
  2. O. Bryngdahl, “Moiré: Formation and interpretation,” J. Opt. Soc. Am.64(10), 1287–1294 (1974). [CrossRef]
  3. I. Amidror, The Theory of the Moiré Phenomenon (Springer-Verlag, 2009).
  4. J. W. Dally and D. T. Read, “Electron beam moiré,” Exp. Mech.33(4), 270–277 (1993). [CrossRef]
  5. B. Pan, H. M. Xie, S. Kishimoto, and Y. Xing, “Experimental study of moiré method in laser scanning confocal microscopy,” Rev. Sci. Instrum.77(4), 043101 (2006). [CrossRef]
  6. H. Chen, D. Liu, and A. Lee, “Moiré in atomic force microscope,” Exp. Mech.24(1), 31–32 (2000).
  7. S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng.32(3), 522–526 (1993). [CrossRef]
  8. C. M. Liu, L. W. Chen, and C. C. Wang, “Nanoscale displacement measurement by a digital nano-moire method with wavelet transformation,” Nanotechnology17(17), 4359–4366 (2006). [CrossRef]
  9. F. Silly, “Moiré pattern induced by the electronic coupling between 1-octanol self-assembled monolayers and graphite surface,” Nanotechnology23(22), 225603 (2012). [CrossRef] [PubMed]
  10. S. Kishimoto, M. Egashira, and N. Shinya, “Observation of micro-deformation by moiré method using a scanning electron microscope,” J. Soc. Mat. Sci.40(452), 637–641 (1991). [CrossRef]
  11. Z. W. Zhong, “Thermal strain analysis of IC packages using various Moiré methods,” Microelectron. Int.21(3), 25–28 (2004). [CrossRef]
  12. H. Chen and D. Liu, “Advances in scanning electron microscope Moiré,” Exp. Mech.41(2), 165–173 (2001). [CrossRef]
  13. Y. M. Xing, Y. Tanaka, S. Kishimoto, and N. Shinya, “Determining interfacial thermal residual stress in SiC/Ti-15-3 composites,” Scr. Mater.48(6), 701–706 (2003). [CrossRef]
  14. H. Du, H. Xie, Z. Guo, B. Pan, Q. Luo, C. Gu, H. Jiang, and L. Rong, “Large-deformation analysis in microscopic area using micro- Moiré methods with a focused ion beam milling grating,” Opt. Lasers Eng.45(12), 1157–1169 (2007). [CrossRef]
  15. Y. J. Li, H. M. Xie, B. Q. Guo, Q. Luo, C. Z. Gu, and M. Q. Xu, “Fabrication of high-frequency moiré gratings for microscopic deformation measurement using focused ion beam milling,” J. Micromech. Microeng.20(5), 055037 (2010). [CrossRef]
  16. Z. W. Liu, X. F. Huang, H. M. Xie, X. H. Lou, and H. Du, “The artificial periodic lattice phase analysis method applied to deformation evaluation of TiNi shape memory alloy in micro scale,” Meas. Sci. Technol.22(12), 125702 (2011). [CrossRef]
  17. Z. X. Hu, H. Xie, J. Lu, Z. Liu, and Q. Wang, “A new method for the reconstruction of micro- and nanoscale planar periodic structures,” Ultramicroscopy110(9), 1223–1230 (2010). [CrossRef] [PubMed]
  18. H. M. Xie, Q. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy Moiré method and its application in the structure of butterfly wing,” J. Appl. Phys.101(10), 103511 (2007). [CrossRef]
  19. Y. Arai, M. Ando, S. Kanameishi, and S. Yokozeki, “Micro 3D measurement method using SEM,” Mapan26(1), 69–78 (2011). [CrossRef]
  20. G. Piazzesi, “Photogrammetry with the scanning electron microscope,” J. Phys. E Sci. Instrum.6(4), 392–396 (1973). [CrossRef]
  21. G. S. Lane, “The application of stereographic techniques to the scanning electron microscope,” J. Phys. E Sci. Instrum.2(7), 565–569 (1969). [CrossRef]
  22. C. W. Li, Z. W. Liu, and H. Xie, “A measurement method for micro 3D shape based on grids-processing and stereovision technology,” Meas. Sci. Technol.24(4), 045401 (2013). [CrossRef]
  23. F. Marinello, P. Bariani, E. Savio, A. Horsewell, and L. De Chiffre, “Critical factors in SEM 3D stereo microscopy,” Meas. Sci. Technol.19(6), 065705 (2008). [CrossRef]
  24. M. J. Tang, H. Xie, J. Zhu, X. Li, and Y. Li, “Study of Moiré grating fabrication on metal samples using nanoimprint lithography,” Opt. Express20(3), 2942–2955 (2012). [CrossRef] [PubMed]
  25. G. A. Mastin and D. C. Ghiglia, “Digital extraction of interference fringe contours,” Appl. Opt.24(12), 1727–1728 (1985). [CrossRef] [PubMed]
  26. T. Y. Chen and C. E. Taylor, “Computerized fringe analysis in photomechanics,” Exp. Mech.29(3), 323–329 (1989). [CrossRef]
  27. Y. Morimoto, “Digital image processing,” In: Kobayashi A. eds., Handbook on Experimental Mechanics. 2nd edition. SEM, (1994).
  28. W. W. Macy and W. William, “Two-dimensional fringe-pattern analysis,” Appl. Opt.22(23), 3898–3901 (1983). [CrossRef] [PubMed]
  29. G. Lai and T. Yatagai, “Generalized phase-shifting interferometry,” JOSA A.8(5), 822–827 (1991). [CrossRef]
  30. M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. Mcneill, H. W. Schreier, and X. D. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol.17(10), 2613–2622 (2006). [CrossRef]
  31. T. Zhu, M. A. Sutton, N. Li, J. J. Orteu, N. Cornille, X. Li, and A. P. Reynolds, “Quantitative stereovision in a scanning electron microscope,” Exp. Mech.51(1), 97–109 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited