OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15755–15764

Generation of high-order optical vortices with asymmetrical pinhole plates under plane wave illumination

Zhenhua Li, Meina Zhang, Guotao Liang, Xing Li, Xiaoyi Chen, and Chuanfu Cheng  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15755-15764 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2119 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel and simple method for generating optical vortex with high topological charge (TC), merely using an asymmetrical pinhole plate illuminated by plane wave. N pinholes are arranged along a particular spiral line around the plate origin, with constant azimuth angle increment and varied radial distances. The radial differences introduce a constant variation of m/N wavelength to the optical paths from the N pinholes to the observation plane origin, and this increases the phases of the transmitting waves by progressively 2mπ/N and totally 2mπ . We numerically calculate the transmitted light field according to the Fresnel diffraction theory, and find the vortex with TC m around the observation plane origin. The experimental verifications are performed using some self-made asymmetrical pinhole plates fabricated by a femtosecond laser, with the high TC vortices both generated and detected in a Mach-Zehnder type interferometer. The experimental results coincide with the theoretical simulations well.

© 2013 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(350.5030) Other areas of optics : Phase
(050.4865) Diffraction and gratings : Optical vortices
(260.6042) Physical optics : Singular optics
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Physical Optics

Original Manuscript: April 30, 2013
Revised Manuscript: June 8, 2013
Manuscript Accepted: June 8, 2013
Published: June 25, 2013

Zhenhua Li, Meina Zhang, Guotao Liang, Xing Li, Xiaoyi Chen, and Chuanfu Cheng, "Generation of high-order optical vortices with asymmetrical pinhole plates under plane wave illumination," Opt. Express 21, 15755-15764 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Vaity and R. P. Singh, “Topological charge dependent propagation of optical vortices under quadratic phase transformation,” Opt. Lett.37(8), 1301–1303 (2012). [CrossRef] [PubMed]
  2. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  3. J. B. Götte, K. O’Holleran, D. Preece, F. Flossmann, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Light beams with fractional orbital angular momentum and their vortex structure,” Opt. Express16(2), 993–1006 (2008). [CrossRef] [PubMed]
  4. K. T. Gahagan and G. A. Swartzlander., “Simultaneous trapping of low-index and high-index micro particles observed with an optical-vortex trap,” J. Opt. Soc. Am. B16(4), 533–537 (1999). [CrossRef]
  5. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett.78(25), 4713–4716 (1997). [CrossRef]
  6. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995). [CrossRef] [PubMed]
  7. L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Opt.39, 291–372 (1999). [CrossRef]
  8. W. M. Lee, X.-C. Yuan, and W. C. Cheong, “Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation,” Opt. Lett.29(15), 1796–1798 (2004). [CrossRef] [PubMed]
  9. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1-6), 169–175 (2002). [CrossRef]
  10. K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express12(6), 1144–1149 (2004). [CrossRef] [PubMed]
  11. A. Vaziri, J. W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett.91(22), 227902 (2003). [CrossRef] [PubMed]
  12. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett.17(3), 221–223 (1992). [CrossRef] [PubMed]
  13. A. Bekshaev, O. Orlinska, and M. Vasnetsov, “Optical vortex generation with a ‘fork’ hologram under conditions of high-angle diffraction,” Opt. Commun.283(10), 2006–2016 (2010).
  14. A. Y. Bekshaev, S. V. Sviridova, A. Y. Popov, and A. V. Tyurin, “Generation of optical vortex light beams by volume holograms with embedded phase singularity,” Opt. Commun.285(20), 4005–4014 (2012).
  15. V. V. Kotlyar, A. A. Almazov, S. N. Khonina, V. A. Soifer, H. Elfstrom, and J. Turunen, “Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate,” J. Opt. Soc. Am. A22(5), 849–861 (2005). [CrossRef] [PubMed]
  16. M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature464(7289), 737–739 (2010). [CrossRef] [PubMed]
  17. J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys.6(71), (2004).
  18. S. Vyas and P. Senthilkumaran, “Interferometric optical vortex array generator,” Appl. Opt.46(15), 2893–2898 (2007). [CrossRef] [PubMed]
  19. R. K. Tyson, M. Scipioni, and J. Viegas, “Generation of an optical vortex with a segmented deformable mirror,” Appl. Opt.47(33), 6300–6306 (2008). [CrossRef] [PubMed]
  20. G. X. Wei, P. Wang, and Y. Y. Liu, “Phase retrieval and coherent diffraction imaging by a linear scanning pinhole sampling array,” Opt. Commun.284(12), 2720–2725 (2011). [CrossRef]
  21. G. Ruben and D. M. Paganin, “Phase vortices from a Young’s three-pinhole interferometer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(6), 066613 (2007). [CrossRef] [PubMed]
  22. G. C. G. Berkhout and M. W. Beijersbergen, “Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects,” Phys. Rev. Lett.101(10), 100801 (2008). [CrossRef] [PubMed]
  23. G. C. G. Berkhout and M. W. Beijersbergen, “Using a multipoint interferometer to measure the orbital angular momentum of light in astrophysics,” J. Opt. A, Pure Appl. Opt.11(9), 094021 (2009). [CrossRef]
  24. G. C. G. Berkhout and M. W. Beijersbergen, “Measuring optical vortices in a speckle pattern using a multi-pinhole interferometer,” Opt. Express18(13), 13836–13841 (2010). [CrossRef] [PubMed]
  25. L. Shi, L. H. Tian, and X. F. Chen, “Characterizing topological charge of optical vortex using non-uniformly distributed multi-pinhole plate,” Chin. Opt. Lett.10(12), 120501 (2012). [CrossRef]
  26. F. Ricci, W. Löffler, and M. P. van Exter, “Instability of higher-order optical vortices analyzed with a multi-pinhole interferometer,” Opt. Express20(20), 22961–22975 (2012). [CrossRef] [PubMed]
  27. J. Xavier, S. Vyas, P. Senthilkumaran, and J. Joseph, “Tailored complex 3D vortex lattice structures by perturbed multiples of three-plane waves,” Appl. Opt.51(12), 1872–1878 (2012). [CrossRef] [PubMed]
  28. X. Y. Chen, Z. H. Li, H. X. Li, M. N. Zhang, and C. F. Cheng, “Experimental study on the existence and properties of speckle phase vortices in the diffraction region near random surfaces,” Opt. Express20(16), 17833–17842 (2012). [CrossRef] [PubMed]
  29. S. Vyas and P. Senthilkumaran, “Vortex array generation by interference of spherical waves,” Appl. Opt.46(32), 7862–7867 (2007). [CrossRef] [PubMed]
  30. A. Mourka, J. Baumgartl, C. Shanor, K. Dholakia, and E. M. Wright, “Visualization of the birth of an optical vortex using diffraction from a triangular aperture,” Opt. Express19(7), 5760–5771 (2011). [CrossRef] [PubMed]
  31. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A, Pure Appl. Opt.6(2), 259–268 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited