OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15777–15786

Phase-only shaping algorithm for Gaussian-apodized Bessel beams

Charles G. Durfee, John Gemmer, and Jerome V. Moloney  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15777-15786 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2516 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Gaussian-apodized Bessel beams can be used to create a Bessel-like axial line focus at a distance from the focusing lens. For many applications it is desirable to create an axial intensity profile that is uniform along the Bessel zone. In this article, we show that this can be accomplished through phase-only shaping of the wavefront in the far field where the beam has an annular ring structure with a Gaussian cross section. We use a one-dimensional transform to map the radial input field to the axial Bessel field and then optimized the axial intensity with a Gerchberg-Saxton algorithm. By separating out the quadratic portion of the shaping phase the algorithm converges more rapidly.

© 2013 OSA

OCIS Codes
(220.2560) Optical design and fabrication : Propagating methods
(070.7345) Fourier optics and signal processing : Wave propagation
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Physical Optics

Original Manuscript: April 10, 2013
Revised Manuscript: May 16, 2013
Manuscript Accepted: May 21, 2013
Published: June 25, 2013

Charles G. Durfee, John Gemmer, and Jerome V. Moloney, "Phase-only shaping algorithm for Gaussian-apodized Bessel beams," Opt. Express 21, 15777-15786 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Zamboni-Rached, “Stationary optical wave fields with arbitrary longitudinal shape by superposing equal frequency Bessel beams: Frozen Waves,” Opt. Express12(1), 4001 (2004). [CrossRef] [PubMed]
  2. T. Graf, D. Christodoulides, M. S. Mills, J. Moloney, S. C. Venkataramani, and E. M. Wright, “Propagation of Gaussian-apodized paraxial beams through first-order optical systems via complex coordinate transforms and ray transfer matrices,” J. Opt. Soc. Am. A29(9), 1860–1869 (2012). [CrossRef]
  3. F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun.64(6), 491–495 (1987). [CrossRef]
  4. V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, and G. Spagnolo, “Generalized bessel-gauss beams,” J. Mod. Opt.43(6), 1155–1166 (1996).
  5. P. Dufour, M. Piché, Y. De Koninck, and N. McCarthy, “Two- photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt.45, 9246–9252 (2006). [CrossRef] [PubMed]
  6. T. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8, 417–423 (2011). [CrossRef] [PubMed]
  7. J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun.1974–6), 239–245 (2001). [CrossRef]
  8. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett.27(4), 243–245 (2002). [CrossRef]
  9. F. Courvoisier, J. Zhang, M. K. Bhuyan, M. Jacquot, and J. M. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A (2012).
  10. B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E55(3), 3539–3545 (1997). [CrossRef]
  11. P. Polynkin, M. Kolesik, A. Roberts, D. Faccio, P. Di Trapani, and J. Moloney, “Generation of extended plasma channels in air using femtosecond Bessel beams,” Opt. Express16(20), 15733–15740 (2008). [CrossRef]
  12. A. T. Friberg, “Stationary-phase analysis of generalized axicons,” J. Opt. Soc. Am. A13(4), 743–750 (1996). [CrossRef]
  13. I. Golub, B. Chebbi, D. Shaw, and D. Nowacki, “Characterization of a refractive logarithmic axicon,” Opt. Lett.35(16), 2828–2830 (2010). [CrossRef] [PubMed]
  14. I. Golub, T. Mirtchev, J. Nuttall, and D. Shaw, “The taming of absorption: generating a constant intensity beam in a lossy medium,” Opt. Lett.37(13), 2556–2558 (2012). [CrossRef] [PubMed]
  15. M. Honkanen and J. Turunen, “Tandem systems for efficient generation of uniform-axial-intensity Bessel fields,” Opt. Commun.154(5), 368375 (1998). [CrossRef]
  16. B. Chebbi, I. Golub, and K. Gourley, “Homogenization of on-axis intensity distribution produced by a Fresnel refractive axicon,” Opt. Commun.285(7), 1636–1641 (2012). [CrossRef]
  17. J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bara, “Nonparaxial design of generalized axicons,” Appl. Opt.31(25), 5326–5330 (1992). [CrossRef] [PubMed]
  18. T. Čižmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express17(18), 15558–15570 (2009). [CrossRef]
  19. M. Pasienski and B. DeMarco, “A high-accuracy algorithm for designing arbitrary holographic atom traps,” Opt. Express, 16(3), 2176–2190 (2008). [CrossRef] [PubMed]
  20. L. Niggl, T. Lanzl, and M. Maier, “Properties of Bessel beams generated by periodic gratings of circular symmetry,” J. Opt. Soc. Am. A14(1), 27–33 (1997). [CrossRef]
  21. J. A. Hoffnagle and C. M. Jefferson, “Design and performance of a refractive optical system that converts a Gaussian to a flattop beam,” Appl. Opt.39(30), 5488–5499 (2000). [CrossRef]
  22. R. W. Gerchberg and W. O. Saxton, “Phase determination from image and diffraction plane pictures in the electron microscope,” Optik35, 237–246 (1972).
  23. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng.21, 829–832 (1982). [CrossRef]
  24. J. S. Liu and M. R. Taghizadeh, “Iterative algorithm for the design of diffractive phase elements for laser beam shaping,” Opt. Lett.27(16), 1463 (2002). [CrossRef]
  25. A. Rundquist, A. Efimov, and D. H. Reitze, “Pulse shaping with the Gerchberg-Saxton algorithm,” J. Opt. Soc. Am. B19(10), 2468–2478 (2002). [CrossRef]
  26. J. R. Fienup, “Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint,” J. Opt. Soc. Am. A (1987). [CrossRef]
  27. A. Lipson, S. G. Lipson, and H. Lipson, Optical Physics, 4th ed. (Cambridge University Press, 2010). [CrossRef]
  28. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt.21(15), 2758–2769 (1982). [CrossRef] [PubMed]
  29. C. Zapata-Rodríguez, “Ultrafast diffraction of tightly focused waves with spatiotemporal stabilization,” J. Opt. Soc. Am. B25(9), 1449–1457 (2008). [CrossRef]
  30. A. Burvall, K. Kolacz, Z. Jaroszewicz, and A. Friberg, “Simple lens axicon,” Appl. Opt.43(25), 4838–4844 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited