OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15787–15808

Automated segmentation and characterization of choroidal vessels in high-penetration optical coherence tomography

Lian Duan, Young-Joo Hong, and Yoshiaki Yasuno  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15787-15808 (2013)
http://dx.doi.org/10.1364/OE.21.015787


View Full Text Article

Enhanced HTML    Acrobat PDF (7215 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An automated choroidal vessel segmentation and quantification method for high-penetration optical coherence tomography (OCT) was developed for advanced visualization and evaluation of the choroidal vasculature. This method uses scattering OCT volumes for the segmentation of choroidal vessels by using a multi-scale adaptive threshold. The segmented choroidal vessels are then processed by multi-scale morphological analysis to quantify the vessel diameters. The three-dimensional structure and the diameter distribution of the choroidal vasculature were then obtained. The usefulness of the method was then evaluated by analyzing the OCT volumes of normal subjects.

© 2013 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(110.4500) Imaging systems : Optical coherence tomography
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 12, 2013
Revised Manuscript: June 9, 2013
Manuscript Accepted: June 10, 2013
Published: June 25, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Lian Duan, Young-Joo Hong, and Yoshiaki Yasuno, "Automated segmentation and characterization of choroidal vessels in high-penetration optical coherence tomography," Opt. Express 21, 15787-15808 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15787


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Linsenmeier and L. Padnick-Silver, “Metabolic dependence of photoreceptors on the choroid in the normal and detached retina,” Invest. Ophthalmol. Vis. Sci.41, 3117–3123 (2000). [PubMed]
  2. D. L. Nickla and J. Wallman, “The multifunctional choroid,” Prog. Retin. Eye Res.29, 144–168 (2010). [CrossRef] [PubMed]
  3. R. J. Klein, C. Zeiss, E. Y. Chew, J.-Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable, and J. Hoh, “Complement factor h polymorphism in age-related macular degeneration,” Science308, 385–389 (2005). [CrossRef] [PubMed]
  4. S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology113, 1425–1431 (2006). [CrossRef] [PubMed]
  5. V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol.152, 663–668 (2011). [CrossRef] [PubMed]
  6. D. R. Guyer, L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, A. Ho, and D. Orlock, “Digital indocyanine green videoangiography of central serous chorioretinopathy.” Arch. Ophthalmol.112, 1057–1062 (1994). [CrossRef] [PubMed]
  7. L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey.” Ophthalmology93, 611–617 (1986). [PubMed]
  8. M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green.” Ophthalmology101, 529–533 (1994). [PubMed]
  9. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography — principles and applications,” Rep. Prog. Phys.66, 239–303 (2003). [CrossRef]
  10. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27, 45–88 (2008). [CrossRef]
  11. R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol.146, 496–500 (2008). [CrossRef] [PubMed]
  12. R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol.147, 811–815 (2009). [CrossRef] [PubMed]
  13. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express13, 3252–3258 (2005). [CrossRef] [PubMed]
  14. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express14, 4403–4411 (2006). [CrossRef] [PubMed]
  15. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography,” Opt. Express15, 6121–6139 (2007). [CrossRef] [PubMed]
  16. L. Duan, M. Yamanari, and Y. Yasuno, “Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography,” Opt. Express20, 3353–3366 (2012). [CrossRef] [PubMed]
  17. T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography,” Opt. Express20, 7564–7574 (2012). [CrossRef] [PubMed]
  18. R. Motaghiannezam, D. M. Schwartz, and S. E. Fraser, “In vivo human choroidal vascular pattern visualization using high-speed swept-source optical coherence tomography at 1060 nm,” Invest. Ophthalmol. Vis. Sci.53, 2337–2348 (2012). [CrossRef] [PubMed]
  19. Y.-J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, “High-penetration swept source doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express20, 2740–2760 (2012). [CrossRef] [PubMed]
  20. F. Jaillon, S. Makita, and Y. Yasuno, “Variable velocity range imaging of the choroid with dual-beam optical coherence angiography,” Opt. Express20, 385–396 (2012). [CrossRef] [PubMed]
  21. B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved oct using interval-optimized backstitched b-scans,” Opt. Express20, 20516–20534 (2012). [CrossRef] [PubMed]
  22. K. Nakai, F. Gomi, Y. Ikuno, Y. Yasuno, T. Nouchi, N. Ohguro, and K. Nishida, “Choroidal observations in vogt-koyanagi-harada disease using high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol.250, 1089–1095 (2012). [CrossRef] [PubMed]
  23. P. Jirarattanasopa, S. Ooto, I. Nakata, A. Tsujikawa, K. Yamashiro, A. Oishi, and N. Yoshimura, “Choroidal thickness, vascular hyperpermeability, and complement factor h in age-related macular degeneration and polypoidal choroidal vasculopathy,” Invest. Ophthalmol. Vis. Sci.53, 3663–3672 (2012). [CrossRef] [PubMed]
  24. J.-C. Mwanza, F. E. Sayyad, and D. L. Budenz, “Choroidal thickness in unilateral advanced glaucoma,” Invest. Ophthalmol. Vis. Sci.53, 6695–6701 (2012). [CrossRef] [PubMed]
  25. S. Kuroda, Y. Ikuno, Y. Yasuno, K. Nakai, S. Usui, M. Sawa, M. Tsujikawa, F. Gomi, and K. Nishida, “Choroidal thickness in central serous chorioretinopathy.” Retina33, 302–308 (2013). [CrossRef]
  26. S. Usui, Y. Ikuno, A. Miki, K. Matsushita, Y. Yasuno, and K. Nishida, “Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma.” Am. J. Ophthalmol.153, 10–6.e1 (2012). [CrossRef]
  27. J.-C. Mwanza, J. T. Hochberg, M. R. Banitt, W. J. Feuer, and D. L. Budenz, “Lack of association between glaucoma and macular choroidal thickness measured with enhanced depth-imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52, 3430–3435 (2011). [CrossRef] [PubMed]
  28. Z. Q. Yin, Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma.” J. Glaucoma6, 23–32 (1997). [CrossRef] [PubMed]
  29. M. E. Martínez-Pérez, A. D. Hughes, A. V. Stanton, S. A. Thom, and A. A. B. K. H. Parker, “Retinal blood vessel segmentation by means of scale-space analysis and region growing,” Lecture Notes in Comput. Sci.1679, 90–97 (1999). [CrossRef]
  30. J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and B. van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imag.23, 501–509 (2004). [CrossRef]
  31. W. Cai and A. C. S. Chung, “Multi-resolution vessel segmentation using normalized cuts in retinal images,” Lecture Notes in Comput. Sci.4191, 928–936 (2006). [CrossRef]
  32. M. D. Saleh, C. Eswaran, and A. Mueen, “An automated blood vessel segmentation algorithm using histogram equalization and automatic threshold selection,” J. Digit. Imag.24, 564–572 (20011).
  33. E. Ricci and R. Perfetti, “Retinal blood vessel segmentation using line operators and support vector classification.” IEEE Trans. Med. Imag.26, 1357–1365 (2007). [CrossRef]
  34. A. S. G. Singh, T. Schmoll, and R. A. Leitgeb, “Segmentation of doppler optical coherence tomography signatures using a support-vector machine.” Biomed. Opt. Express2, 1328–1339 (2011). [CrossRef] [PubMed]
  35. L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical sd-oct,” Invest. Ophthalmol. Vis. Sci.53, 7510–7519 (2012). [CrossRef] [PubMed]
  36. V. Kajić, M. Esmaeelpour, C. Glittenberg, M. F. Kraus, J. Honegger, R. Othara, S. Binder, J. G. Fujimoto, and W. Drexler, “Automated three-dimensional choroidal vessel segmentation of 3d 1060 nm oct retinal data,” Biomed. Opt. Express4, 134–150 (2013). [CrossRef]
  37. M. Sohrab, K. Wu, and A. A. Fawzi, “A pilot study of morphometric analysis of choroidal vasculature in vivousing en face optical coherence tomography,” PLoS ONE7, e48631 (2012). [CrossRef]
  38. A. N. S. Institute, American National Standard for the Safe Use of Lasers ANSI Z136.1-2007 (American National Standards Institute, New York, 2007).
  39. F. C. Crow, “Summed-area tables for texture mapping,” ACM SIGGRAPH Comput. Graphics18, 207–212 (1984). [CrossRef]
  40. J. Kittler, J. Illingworth, and J. Föglein, “Threshold selection based on a simple image statistic,” Comput. Vis. Graph.30, 125–147 (1985). [CrossRef]
  41. N. Sang, H. Li, W. Peng, and T. Zhang, “Knowledge-based adaptive thresholding segmentation of digital subtraction angiography images,” Imag. Vision Comput.25, 1263–1270 (2007). [CrossRef]
  42. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst., Man, Cybern., Syst.9, 62–66 (1979). [CrossRef]
  43. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell629–639 (1990). [CrossRef]
  44. A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Lecture Notes in Computer Science1496, 130–137 (1998). [CrossRef]
  45. A. F. Frangi, “Three-dimensional model-based analysis of vascular and cardiac images,” Ph.D. thesis, Proefschrift Universiteit Utrecht (2001).
  46. C.-H. Wu, G. Agam, and P. Stanchev, “A general framework for vessel segmentation in retinal images,” in “International Symposium on Computational Intelligence in Robotics and Automation, 2007. CIRA 2007.”, (2007), pp. 37–42. [CrossRef]
  47. T. Agawa, M. Miura, Y. Ikuno, S. Makita, T. Fabritius, T. Iwasaki, H. Goto, K. Nishida, and Y. Yasuno, “Choroidal thickness measurement in healthy japanese subjects by three-dimensional high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol.249, 1485–1492 (2011). [CrossRef] [PubMed]
  48. Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional jones matrix swept source optical coherence tomography for doppler and polarization imaging,” Opt. Lett.37, 1958–1960 (2012). [CrossRef] [PubMed]
  49. M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging.” PLoS One7, e44026 (2012). [CrossRef] [PubMed]
  50. S. Nagase, M. Yamanari, R. Tanaka, T. Yasui, M. Miura, T. Iwasaki, H. Goto, and Y. Yasuno, “Anisotropic alteration of scleral birefringence to uniaxial mechanical strain,” PLoS ONE8, e58716 (2013). [CrossRef] [PubMed]
  51. B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-μm for the measurement of blood flow in the human choroid.” Opt. Express19, 20886–20903 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (977 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited