OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15826–15833

Widely tunable polarization maintaining photonic crystal fiber based parametric wavelength conversion

Robert T. Murray, Edmund J. R. Kelleher, Sergei V. Popov, Arnaud Mussot, Alexandre Kudlinski, and James R. Taylor  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15826-15833 (2013)
http://dx.doi.org/10.1364/OE.21.015826


View Full Text Article

Enhanced HTML    Acrobat PDF (1807 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a near-visible parametric wavelength converter comprising a polarization-maintaining photonic crystal fiber (PM-PCF) pumped by a highly versatile diode-seeded master-oscillator power amplifier system based around 1.06 μm. The device is broadly tunable in wavelength (0.74–0.81 μm), pulse duration (0.2–1.5 ns) and repetition rate (1–30 MHz). A maximum anti-Stokes slope conversion efficiency of 14.9% is achieved with corresponding anti-Stokes average output powers of 845 mW, at a wavelength of 0.775 μm.

© 2013 OSA

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 27, 2013
Revised Manuscript: May 5, 2013
Manuscript Accepted: May 8, 2013
Published: June 25, 2013

Citation
Robert T. Murray, Edmund J. R. Kelleher, Sergei V. Popov, Arnaud Mussot, Alexandre Kudlinski, and James R. Taylor, "Widely tunable polarization maintaining photonic crystal fiber based parametric wavelength conversion," Opt. Express 21, 15826-15833 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15826


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. S. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett.28, 2225–2227 (2003). [CrossRef] [PubMed]
  2. A. Chen, G. Wong, S. Murdoch, R. Leonhardt, J. Harvey, J. Knight, W. Wadsworth, and P. Russell, “Widely tunable optical parametric generation in a photonic crystal fiber,” Opt. Lett.30, 762–764 (2005). [CrossRef] [PubMed]
  3. J. D. Harvey, S. G. Murdoch, S. Coen, R. Leonhardt, D. Mechin, and G. K. L. Wong, “Parametric processes in microstructured and highly nonlinear fibers,” Opt. Quant. Electron.39, 1103–1114 (2007). [CrossRef]
  4. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett.34, 3499–3501 (2009). [CrossRef] [PubMed]
  5. L. Lavoute, J. C. Knight, P. Dupriez, and W. J. Wadsworth, “High power red and near-IR generation using four wave mixing in all integrated fiber laser systems,” Opt. Express18, 16193–16205 (2010). [CrossRef] [PubMed]
  6. C. Jauregui, A. Steinmetz, J. Limpert, and A. Tünnermann, “High-power efficient generation of visible and mid-infrared radiation exploiting four-wave-mixing in optical fibers,” Opt. Express20, 24957–24965 (2012). [CrossRef] [PubMed]
  7. A. Herzog, A. Shamir, and A. A. Ishaaya, “Wavelength conversion of nanosecond pulses to the mid-IR in photonic crystal fibers,” Opt. Lett.37, 82–84 (2012). [CrossRef] [PubMed]
  8. J. Sharping, “Microstructure fiber based optical parametric oscillators,” J. Lightwave Technol.26, 2184–2191 (2008). [CrossRef]
  9. R. T. Murray, E. J. R. Kelleher, S. V. Popov, A. Mussot, A. Kudlinski, and J. R. Taylor, “Synchronously pumped photonic crystal fiber-based optical parametric oscillator,” Opt. Lett.37, 3156–3158 (2012). [CrossRef] [PubMed]
  10. G. Van der Westhuizen and J. Nilsson, “All-fiber optical parametric oscillator, pumped by an all-fiber Yb-based MOPA” in Lasers and Electro-Optics (CLEO), 2011 Conference on, (2011), pp. 1–2.
  11. G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion” IEEE J. Quantum Elect.47, 1396–1403 (2011). [CrossRef]
  12. M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express20, 4484–4493 (2012). [CrossRef] [PubMed]
  13. M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Dez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wavemixing,” Opt. Express20, 21010–21018 (2012). [CrossRef] [PubMed]
  14. M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy,” Opt. Express20, 26583–26595 (2012). [CrossRef] [PubMed]
  15. S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. S. Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.37, 1652–1654 (2012). [CrossRef] [PubMed]
  16. T. Gottschall, M. Baumgartl, A. Sagnier, J. Rothhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing,” Opt. Express20, 12004–12013 (2012). [CrossRef] [PubMed]
  17. U. Keller, “Recent developments in compact ultrafast lasers,” Nature424, 831–838 (2003). [CrossRef] [PubMed]
  18. M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science286, 1513–1517 (1999). [CrossRef] [PubMed]
  19. J. Chen, G. Wong, S. Murdoch, R. Kruhlak, R. Leonhardt, J. Harvey, N. Joly, and J. Knight, “Cross-phase modulation instability in photonic crystal fibers,” Opt. Lett.31, 873–875 (2006). [CrossRef] [PubMed]
  20. R. Kruhlak, G. Wong, J. Chen, S. Murdoch, R. Leonhardt, J. Harvey, N. Joly, and J. Knight, “Polarization modulation instability in photonic crystal fibers,” Opt. Lett.31, 1379–1381 (2006). [CrossRef] [PubMed]
  21. A. Kudlinski, A. Bendahmane, D. Labat, S. Virally, R. T. Murray, E. J. R. Kelleher, and A. Mussot, “Simultaneous scalar and cross-phase modulation instabilities in highly birefringent photonic crystal fiber,” Opt. Express21, 8437–8443 (2013). [CrossRef] [PubMed]
  22. E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Continuous-wave parametric oscillation in polarisation maintaining optical fiber,” Quant. Electron.41, 794–800 (2011). [CrossRef]
  23. E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Phase matching for parametric generation in polarization maintaining photonic crystal fiber pumped by tunable Yb-doped fiber laser,” J. Opt. Soc. Am. B29, 1959–1967 (2012). [CrossRef]
  24. D. Turchinovich, X. Liu, and J. Laegsgaard, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express16, 14004–14014 (2008). [CrossRef] [PubMed]
  25. A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron.47, 1514–1518 (2011). [CrossRef]
  26. Y. Zhou, K. K. Y. Cheung, Q. Li, S. Yang, P. C. Chui, and K. K. Y. Wong, “Fast and wide tuning wavelength-swept source based on dispersion-tuned fiber optical parametric oscillator,” Opt. Lett.35, 2427–2429 (2010). [CrossRef] [PubMed]
  27. A. Mussot, A. Kudlinski, R. Habert, I. Dahman, G. Mlin, L. Galkovsky, A. Fleureau, S. Lempereur, L. Lago, D. Bigourd, T. Sylvestre, M. W. Lee, and E. Hugonnot, “20 THz-bandwidth continuous-wave fiber optical parametric amplifier operating at 1 μm using a dispersion-stabilized photonic crystal fiber,” Opt. Express20, 28906–28911 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited