OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15847–15858

Optical transport and sensing in plexcitonic nanocavities

Olalla Pérez-González, Javier Aizpurua, and Nerea Zabala  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15847-15858 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3962 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a theoretical study of the optical properties of a strongly coupled metallic dimer when an ensemble of molecules is placed in the inter-particle cavity. The linking molecules are characterized by an excitonic transition which couples to the Bonding Dimer Plasmon (BDP) and the Bonding Quadrupolar Plasmon (BQP) resonances, arising from the hybridization of the dipolar and quadrupolar modes of the individual nanoparticles, respectively. As a consequence, both modes split into two coupled plasmon-exciton modes, so called plexcitons. The Charge Transfer Plasmon (CTP) resonance, involving plasmonic oscillations of the dimer as a whole, arises when the conductance of the excitonic junction is above a threshold value. The possibility of exploiting plexcitonic resonances for sensing is explored in detail. We find high sensitivity to the environment when different dielectric embedding media are considered. Contrary to standard methods, we propose a new framework for effective sensing based on the relative intensity of plexcitonic peaks.

© 2013 OSA

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: March 28, 2013
Revised Manuscript: May 15, 2013
Manuscript Accepted: May 30, 2013
Published: June 25, 2013

Olalla Pérez-González, Javier Aizpurua, and Nerea Zabala, "Optical transport and sensing in plexcitonic nanocavities," Opt. Express 21, 15847-15858 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Pelton, J. Aizpurua, and G. W. Bryant, “Metal-nanoparticle plasmonics,” Laser & Photon. Rev.2, 136–159 (2008). [CrossRef]
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1, 641–648 (2007). [CrossRef]
  3. N.J. Halas, S. Lal, W.S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111, 3913–3961 (2011). [CrossRef] [PubMed]
  4. A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with Zeptomole sensitivity,” Nano Lett.3, 1057–1062, (2003). [CrossRef]
  5. H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E62, 4318–4324 (2000). [CrossRef]
  6. M. R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S.E. Clare, “A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett.7, 3759–3765 (2007). [CrossRef] [PubMed]
  7. H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Materials9, 205–213 (2010). [CrossRef]
  8. Y. B. Zheng, Y. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett.9, 819–825 (2009). [CrossRef] [PubMed]
  9. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett.90, 057401 (2003). [CrossRef] [PubMed]
  10. H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano4, 2649–2654 (2010). [CrossRef] [PubMed]
  11. C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett.6, 683–688 (2006). [CrossRef] [PubMed]
  12. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4, 899–903 (2004). [CrossRef]
  13. T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett.4, 1627–1631 (2004). [CrossRef]
  14. I. Romero, J. Aizpurua, F. J. García de Abajo, and G. W. Bryant, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express14, 9988–9999 (2006). [CrossRef] [PubMed]
  15. J. B. Lassiter, J. Aizpurua, L. I. Hernández, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8, 1212–1218 (2008). [CrossRef] [PubMed]
  16. M. Schnell, A. García-Etxarri, A. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoatennas,” Nat. Photonics3, 287–291 (2009). [CrossRef]
  17. O. Pérez-González, N. Zabala, A. Borisov, N.J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett.10, 3090–3095 (2010). [CrossRef] [PubMed]
  18. O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer (CTP) and bonding dimer (BDP) plasmons in linked interparticle gaps,” New J. Phys.13, 083013 (2011). [CrossRef]
  19. R. Esteban, A.G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nature Communications3, 825 (2012). [CrossRef] [PubMed]
  20. D.C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett.12, 1333–1339 (2012). [CrossRef] [PubMed]
  21. K. J. Savage, M. M. Hawkeye, R. Esteban, A.G. Borisov, J. Aizpurua, and J.J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature491, 574–577 (2012). [CrossRef] [PubMed]
  22. J.A. Scholl, A. García-Etxarri, A. L. Koh, and J.A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett.13(2), 564–569 (2013). [CrossRef]
  23. L. Venkataraman, J. E. Klare, I. W. Tam, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, “Single-molecule circuits with well-defined molecular conductance,” Nano Lett.6, 458–462, (2006). [CrossRef] [PubMed]
  24. J. Bellesa, C. Bonnand, J.C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett.93, 036404 (2004). [CrossRef]
  25. G.A. Wurtz, P.R. Evans, W. Hendren, R. Atkinson, W. Dyckson, R.J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7, 1297–1303 (2007). [CrossRef] [PubMed]
  26. N.T. Fofang, T. Park, O. Neumann, N.A. Mirin, P. Nordlander, and N.J. Halas, “Plexciton nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregates complexes,” Nano Lett.8, 3481–3487 (2008). [CrossRef] [PubMed]
  27. D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett.10, 274–278 (2010). [CrossRef]
  28. M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett.108, 106402 (2012). [CrossRef] [PubMed]
  29. A. Manjavacas, F.J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett.11, 2318–2323 (2011). [CrossRef] [PubMed]
  30. L. J. Sherry, S. H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett.5, 2034–2038 (2005). [CrossRef] [PubMed]
  31. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc.124, 10596–10604 (2002). [CrossRef] [PubMed]
  32. J.M. Nam, C. S. Thaxton, and C. A. Mirkin, “Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins,” Science301, 1884–1886 (2003). [CrossRef] [PubMed]
  33. E. Galopin, J. Niedziólka-Jönsson, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, A. Noual, R. Boukherroub, and S. Szunerits, “Sensitivity of plasmonic nanostructures coated with thin oxide films for refractive index sensing: experimental and theoretical investigations,” J. Phys. Chem. C, 11411769–11775 (2010). [CrossRef]
  34. F. López-Tejeira, R. Paniagua-Domínguez, and J. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS Nano6, 8989–8996 (2012). [CrossRef] [PubMed]
  35. F.J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B65, 115418 (2002). [CrossRef]
  36. P.B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370 (1972). [CrossRef]
  37. M. Dressel and G. Grüner, Electrodynamics of solids (Cambridge University Press, U.K., 2002). [CrossRef]
  38. K.E. Oughstun and N.A. Cartwright, “On the Lorentz-Lorentz formula and the Lorentz model of dielectric dispersion,” Optics Express11, 1541–1546 (2003). [CrossRef]
  39. O. Pérez-González, Optical properties and high-frequency electron transport in plasmonic cavities, PhD Thesis, (University of the Basque Country, UPV-EHU, 2011).
  40. N. Zabala, O. Pérez-González, P. Nordlander, and J. Aizpurua, “Coupling of nanoparticle plasmons with molecular linkers,” Proc. of SPIE8096, 80961L (2011). [CrossRef]
  41. J. J. Sánchez-Mondragón, N. B. Naroznhy, and J. H. Eberly, “Theory of spontaneous-emission line shape in an ideal cavity,” Phys. Rev. Lett.51, 550–553 (1983). [CrossRef]
  42. G.S. Agarwal, “Vacuum-field Rabi splittings in microwave absorption by Rydberg atoms in a cavity,” Phys. Rev. Lett.53, 1732–1734 (1984). [CrossRef]
  43. S. Rudin and T.L. Reinecke, “Oscillator model for vacuum Rabi splitting in microcavities,” Phys. Rev. B59, 10227–10233 (1999). [CrossRef]
  44. X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express18, 23633–23645 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited