OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15859–15868

Optimizing pump-probe switching ruled by free-carrier dispersion

S. Malaguti, G. Bellanca, and S. Trillo  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15859-15868 (2013)
http://dx.doi.org/10.1364/OE.21.015859


View Full Text Article

Enhanced HTML    Acrobat PDF (1378 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We address theoretically and numerically pump-probe switching in a nonlinear semiconductor nanocavity where tuning is achieved via a dominant mechanism of free-carrier plasma dispersion. By using coupled-mode approach we give a set of guidelines to optimize the switching performances both in terms of avoiding self-pulsation and keeping switching power to the minimum, ending up by showing that such devices can achieve high-performances with relatively low-power consumption.

© 2013 OSA

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(190.4360) Nonlinear optics : Nonlinear optics, devices
(160.5298) Materials : Photonic crystals

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 3, 2013
Revised Manuscript: June 5, 2013
Manuscript Accepted: June 7, 2013
Published: June 25, 2013

Citation
S. Malaguti, G. Bellanca, and S. Trillo, "Optimizing pump-probe switching ruled by free-carrier dispersion," Opt. Express 21, 15859-15868 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15859


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett.30, 2575–2577 (2005). [CrossRef] [PubMed]
  2. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13, 2678–2687 (2005). [CrossRef] [PubMed]
  3. T. Uesugi, B.-S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14, 377–386 (2006). [CrossRef] [PubMed]
  4. E. Weidner, S. Combrié, A. de Rossi, N. V. Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett.90, 101118 (2007). [CrossRef]
  5. S. Combrié, N. V. Q. Tran, A. de Rossi, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 μm,” Opt. Lett.33, 1908–1910 (2008). [CrossRef]
  6. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics4, 477–483 (2010). [CrossRef]
  7. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6, 248–252 (2012). [CrossRef]
  8. Y. Dumeige and P. Féron, “Stability and time-domain analysis of the dispersive tristability in microresonators under modal coupling,” Phys. Rev. A84, 043847 (2011). [CrossRef]
  9. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,”IEEE Photon. Technol. Lett.14, 74–76 (2002). [CrossRef]
  10. Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett.31, 341–343 (2006). [CrossRef] [PubMed]
  11. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Analytical study of optical bistability in silicon ring resonators,” Opt. Lett.35, 55–57 (2009). [CrossRef]
  12. A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett.10, 1506–1511 (2010). [CrossRef] [PubMed]
  13. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Analytical study of optical bistability in silicon-waveguide resonators,” Opt. Express17, 22124–22137 (2009). [CrossRef] [PubMed]
  14. C. Manolatou and M. Lipson, “All-optical silicon modulators based on carrier injection by two-photon absorption,” J. Lightwave Technol.24, 1433–1439 (2006). [CrossRef]
  15. A. de Rossi, M. Lauritano, S. Combrié, Q.V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A79, 043818 (2009). [CrossRef]
  16. C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett.94, 021111 (2009). [CrossRef]
  17. S. Malaguti, G. Bellanca, A. de Rossi, S. Combrié, and S. Trillo, “Self-pulsing driven by two-photon absorption in semiconductor nanocavities,” Phys. Rev. A83, 051802(R)(2011). [CrossRef]
  18. A. Rodriguez, M. Soljaĉić, J. D. Joannopoulos, and S. G. Johnson, “χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express, 15, 7303–7318 (2007). [CrossRef] [PubMed]
  19. K. Ikeda and O. Akimoto, “Instability Leading to Periodic and Chaotic Self-Pulsations in a Bistable Optical Cavity,” Phys. Rev. Lett.48, 617–620 (1982). [CrossRef]
  20. B. Maes, M. Fiers, and P. Bienstman, “Self-pulsing and chaos in short chains of coupled nonlinear microcavities,” Phys. Rev. A80, 033805 (2009). [CrossRef]
  21. V. Grigoriev and F. Biancalana, “Resonant self-pulsations in coupled nonlinear microcavities,” Phys. Rev. A83, 043816 (2011). [CrossRef]
  22. S. Chen, L. Zhang, Y. Fei, and T. Cao, “Bistability and self-pulsation phenomena in silicon microring resonators based on nonlinear optical effects,” Opt. Express20, 7454–7468 (2012). [CrossRef] [PubMed]
  23. M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity, ”Phys. Rev. A85, 031803(R)(2012). [CrossRef]
  24. T. Van Vaerenbergh, M. Fiers, J. Dambre, and P. Bienstman, “Simplified description of self-pulsation and excitability by thermal and free-carrier effects in semiconductor microcavities,” Phys. Rev. A86, 063808 (2012). [CrossRef]
  25. T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nature Photon.6, 554–559 (2012). [CrossRef]
  26. X. Sun, X. Zhang, C. Schuck, and H. X. Tang, “Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium,” Sci. Rep.3, 01436 (2013). [CrossRef]
  27. Y. Dumeige, A. M. Yacomotti, P. Grinberg, K. Bencheikh, E. Le Cren, and J. A. Levenson, “Microcavity-quality-factor enhancement using nonlinear effects close to the bistability threshold and coherent population oscillations,” Phys. Rev. A85, 063824 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited