OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15869–15877

Enhanced light output power of quantum cascade lasers from a tilted front facet

Sangil Ahn, Clemens Schwarzer, Tobias Zederbauer, Hermann Detz, Aaron M. Andrews, Werner Schrenk, and Gottfried Strasser  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15869-15877 (2013)
http://dx.doi.org/10.1364/OE.21.015869


View Full Text Article

Enhanced HTML    Acrobat PDF (2068 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a technique for enhancing the light output power of quantum cascade lasers (QCLs) by tilting of the front facet, which leads to a change of the modal reflectivity, resulting in an asymmetric light intensity distribution along the laser cavity. This asymmetry provides most of the light being emitted through one facet of the laser. An experimental study of threshold current, slope efficiency and light output power as a function of the front facet angles were performed and compared to conventional QCLs. The lasers with a front facet angle of 8° shows a 20% improved power output from the front facet.

© 2013 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3410) Lasers and laser optics : Laser resonators
(140.3295) Lasers and laser optics : Laser beam characterization
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 18, 2013
Revised Manuscript: May 25, 2013
Manuscript Accepted: May 28, 2013
Published: June 25, 2013

Citation
Sangil Ahn, Clemens Schwarzer, Tobias Zederbauer, Hermann Detz, Aaron M. Andrews, Werner Schrenk, and Gottfried Strasser, "Enhanced light output power of quantum cascade lasers from a tilted front facet," Opt. Express 21, 15869-15877 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15869


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science264(5158), 553–556 (1994). [CrossRef] [PubMed]
  2. S. Kumar, “Recent progress in Terahertz Quantum Cascade Lasers,” IEEE J. Quantum Electron.17(1), 38–47 (2011). [CrossRef]
  3. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics6(7), 432–439 (2012). [CrossRef]
  4. M. Hannemann, A. Antufjew, K. Borgmann, F. Hempel, T. Ittermann, S. Welzel, K. D. Weltmann, H. Völzke, and J. Röpcke, “Influence of age and sex in exhaled breath samples investigated by means of infrared laser absorption spectroscopy,” J. Breath. Res.5(2), 027101 (2011). [CrossRef] [PubMed]
  5. F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum Cascade Lasers: Ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron.38(6), 511–532 (2002). [CrossRef]
  6. G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B92(3), 305–311 (2008). [CrossRef]
  7. B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same frequency lasing and detection,” Appl. Phys. Lett.101(19), 191109 (2012). [CrossRef]
  8. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, C. Kumar, and N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett.95(15), 151112 (2009). [CrossRef]
  9. Y. Bai, S. R. Darvish, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Optimizing facet coating of quantum cascade lasers for low power consumption,” J. Appl. Phys.109(5), 053103 (2011). [CrossRef]
  10. C. E. Zah, J. S. Osinski, C. Caneau, S. G. Menocal, L. A. Reith, J. Salzman, F. K. Shokoohi, and T. P. Lee, “Fabrication and performance of 1.5µm GaInAsP travelling-wave laser amplifiers with angled facets,” Electron. Lett.23(19), 990 (1987). [CrossRef]
  11. M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ≈7.4 µm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80(22), 4103 (2002). [CrossRef]
  12. E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 µm < λ < 8 µm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett.88(12), 121109 (2006). [CrossRef]
  13. Y. Bai, S. Slivken, Q. Y. Lu, N. Bandyopadhyay, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett.101(8), 081106 (2012). [CrossRef]
  14. C. F. Lin, “Superluminescent diodes with angled facet etched by chemically assisted ion beam etching,” Electron. Lett.27(11), 968 (1991). [CrossRef]
  15. A. O. Dirisu, G. Silva, Z. Liu, C. F. Gmachl, F. J. Towner, J. Bruno, and D. L. Sivco, “Reduction of facet reflectivity of quantum-cascade lasers with subwavelength grating,” IEEE Photon. Technol. Lett.19(4), 221–223 (2007). [CrossRef]
  16. N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett.93(18), 181101 (2008). [CrossRef]
  17. M. Ettenberg, H. S. Sommers, H. Kressel, and H. F. Lockwood, “Control of facet damage in GaAs laser diodes,” Appl. Phys. Lett.18(12), 571 (1971). [CrossRef]
  18. K. Petermann, Laser diode modulation and noise, (KTH Scientific Publishers, Dordrecht, 1991), Chap. 2.4. “Lasing characteristic of Fabry-Pérot Type Laser”.
  19. Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photon. Technol. Lett.18(12), 1347–1349 (2006). [CrossRef]
  20. E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, and G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett.96(3), 031111 (2010). [CrossRef]
  21. Z. Y. Zhang, I. J. Luxmoore, C. Y. Jin, H. Y. Liu, Q. Jiang, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, and R. A. Hogg, “Effect of facet angle on effective facet reflectivity and operating characteristics of quantum dot edge emitting lasers and superluminescent light-emitting diodes,” Appl. Phys. Lett.91(8), 081112 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited