OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15951–15958

Mode selection in electrically driven quantum dot microring cavities

Alexander Schlehahn, Ferdinand Albert, Christian Schneider, Sven Höfling, Stephan Reitzenstein, Jan Wiersig, and Martin Kamp  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15951-15958 (2013)
http://dx.doi.org/10.1364/OE.21.015951


View Full Text Article

Enhanced HTML    Acrobat PDF (3188 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Within this paper a novel method for selecting certain lasing modes from a whispering gallery mode (WGM) spectrum of electrically pumped microrings is presented. Selection is achieved by introducing sub-wavelength sized notches of about 50nm width and 500nm depth to the sidewalls of ring shaped quantum dot micro cavities with 80µm diameter and ridge widths below 2µm. It is shown that the notches act as scattering centers, suppressing modes that have maxima in intensity at the notch position. By a variation of the angle between the notches, different repetitive patterns of lasing modes and suppressed modes are conceivable.

© 2013 OSA

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3560) Lasers and laser optics : Lasers, ring
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.0250) Optical devices : Optoelectronics
(230.7408) Optical devices : Wavelength filtering devices
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 25, 2013
Revised Manuscript: June 11, 2013
Manuscript Accepted: June 13, 2013
Published: June 26, 2013

Citation
Alexander Schlehahn, Ferdinand Albert, Christian Schneider, Sven Höfling, Stephan Reitzenstein, Jan Wiersig, and Martin Kamp, "Mode selection in electrically driven quantum dot microring cavities," Opt. Express 21, 15951-15958 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15951


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J.-M. Gérard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” in Single Quantum Dots, P. Michler, ed. (Springer, Berlin, 2003).
  2. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432(7014), 197–200 (2004). [CrossRef] [PubMed]
  3. S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express16(7), 4848–4857 (2008). [CrossRef] [PubMed]
  4. T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys.14(8), 083001 (2012). [CrossRef]
  5. C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, and A. Forchel, “Resonantly probing micropillar cavity modes by photocurrent spectroscopy,” Appl. Phys. Lett.94(22), 221103 (2009). [CrossRef]
  6. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992). [CrossRef]
  7. F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett.97(10), 101108 (2010). [CrossRef]
  8. M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012). [CrossRef]
  9. T. Krauss, P. Laybourn, and J. Roberts, “CW operation of semiconductor ring lasers,” Electron. Lett.26(25), 2095–2097 (1990). [CrossRef]
  10. S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett.74(2), 176–178 (1999). [CrossRef]
  11. R. Krebs, S. Deubert, J. P. Reithmaier, and A. Forchel, “Improved performance of MBE grown quantum-dot lasers with asymmetric dots in a well design emitting near 1.3µm,” J. Cryst. Growth251(1-4), 742–747 (2003). [CrossRef]
  12. S. A. Backes, J. R. A. Cleaver, A. P. Heberle, and K. Köhler, “Microdisk laser structures for mode control and directional emission,” J. Vac. Sci. Technol. B16(6), 3817–3820 (1998). [CrossRef]
  13. M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett.80(12), 2051–2053 (2002). [CrossRef]
  14. A. Arbabi, Y. M. Kang, C.-Y. Lu, E. Chow, and L. L. Goddard, “Realization of a narrowband single wavelength microring mirror,” Appl. Phys. Lett.99(9), 091105 (2011). [CrossRef]
  15. S. Furst, S. Yu, and M. Sorel, “Fast and digitally wavelength-tunable semiconductor ring laser using a monolithically integrated distributed Bragg reflector,” IEEE Photon. Technol. Lett.20(23), 1926–1928 (2008). [CrossRef]
  16. I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, “„Semiconductor ring laser with on-chip filtered optical feedback for discrete wavelength tuning,” IEEE J. Quantum Electron.48(2), 129–136 (2012). [CrossRef]
  17. F. Mandorlo, P. R. Romeo, N. Olivier, L. Ferrier, R. Orobtchouk, X. Letartre, J. M. Fedeli, and P. Viktorovitch, “Controlled Multi-Wavelength Emission in Full CMOS Compatible Micro-Lasers for on Chip Interconnections,” J. Lightwave Technol.30(19), 3073–3080 (2012). [CrossRef]
  18. A. Andronico, J. Claudon, J.-M. Gérard, V. Berger, and G. Leo, “Integrated terahertz source based on three-wave mixing of whispering-gallery modes,” Opt. Lett.33(21), 2416–2418 (2008). [CrossRef] [PubMed]
  19. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Q factor and emission pattern control of the WG modes in notched microdisk resonators,” IEEE J. Sel. Top. Quantum Electron.12(1), 52–58 (2006). [CrossRef]
  20. B. D. Jones, M. Oxborrow, V. N. Astratov, M. Hopkinson, A. Tahraoui, M. S. Skolnick, and A. M. Fox, “Splitting and lasing of whispering gallery modes in quantum dot micropillars,” Opt. Express18(21), 22578–22592 (2010). [CrossRef] [PubMed]
  21. X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A83(2), 023803 (2011). [CrossRef]
  22. J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A, Pure Appl. Opt.5(1), 53–60 (2003). [CrossRef]
  23. J. Wiersig, “Perturbative approach to optical microdisks with a local boundary deformation,” Phys. Rev. A85(6), 063838 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited