OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15959–15973

Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion

J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15959-15973 (2013)
http://dx.doi.org/10.1364/OE.21.015959


View Full Text Article

Enhanced HTML    Acrobat PDF (1273 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a novel time-frequency quantum key distribution (TFQKD) scheme based on photon pairs entangled in these two conjugate degrees of freedom. The scheme uses spectral detection and phase modulation to enable measurements in the temporal basis by means of time-to-frequency conversion. This allows large-alphabet encoding to be implemented with realistic components. A general security analysis for TFQKD with binned measurements reveals a close connection with finite-dimensional QKD protocols and enables analysis of the effects of dark counts on the secure key size.

© 2013 OSA

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(060.4230) Fiber optics and optical communications : Multiplexing
(060.4510) Fiber optics and optical communications : Optical communications
(060.5060) Fiber optics and optical communications : Phase modulation
(270.5570) Quantum optics : Quantum detectors
(060.5565) Fiber optics and optical communications : Quantum communications
(270.5568) Quantum optics : Quantum cryptography
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: May 6, 2013
Revised Manuscript: June 19, 2013
Manuscript Accepted: June 20, 2013
Published: June 26, 2013

Citation
J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith, "Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion," Opt. Express 21, 15959-15973 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15959


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Rarity, P. Tapster, J. Walker, and S. Seward, “Experimental demonstration of single photon rangefinding using parametric downconversion,” Appl. Opt.29, 2939–2943 (1990). [CrossRef] [PubMed]
  2. A. Datta, L. Zhang, N. Thomas-Peter, U. Dorner, B. J. Smith, and I. A. Walmsley, “Quantum metrology with imperfect states and detectors,” Phys. Rev. A83, 063836 (2011). [CrossRef]
  3. P. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” Appl. Math. J. Comp26, 1484–1509 (1997).
  4. B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James, A. Gilchrist, and A. G. White, “Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement,” Phys. Rev. Lett.99, 250505 (2007). [CrossRef]
  5. E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling,” Nat. Photonics6, 773–776 (2012). [CrossRef]
  6. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, ““Plug and play” systems for quantum cryptography,” Appl. Phys. Lett.70, 793–795 (1997). [CrossRef]
  7. J. H. Shapiro, “Defeating passive eavesdropping with quantum illumination,” Phys. Rev. A80, 022320 (2009). [CrossRef]
  8. A. Hayat, X. Xing, A. Feizpour, and A. M. Steinberg, “Multidimensional quantum information based on single-photon temporal wavepackets,” arXiv:1212.1483 (2012).
  9. P. Rohde, J. Fitzsimons, and A. Gilchrist, “The information capacity of a single photon,” arXiv:1211.1427 (2012).
  10. J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key distribution using dispersive optics,” arXiv:1210.4501 (2012).
  11. Z. Chang-Hua, P. Chang-Xing, Q. Dong-Xiao, G. Jing-Liang, C. Nan, and Y. Yun-Hui, “A new quantum key distribution scheme based on frequency and time coding,” Chin. Phys. Lett.27, 090301 (2010). [CrossRef]
  12. B. Qi, “Single-photon continuous-variable quantum key distribution based on the energy-time uncertainty relation,” Opt. Lett.31, 2795–2797 (2006). [CrossRef] [PubMed]
  13. S. Galbraith, Mathematics of public key cryptography (Cambridge University, 2012). [CrossRef]
  14. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002). [CrossRef]
  15. C. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Proceedings of IEEE International Conference on Computers, Systems and Signal Processing175–179 (1984).
  16. “MagiQ ( http://magiqtech.com ), ID Quantique ( www.idquantique.com ), QuintessenceLabs (qlabsusa.com), Toshiba ( http://www.toshiba-europe.com/research/crl/qig/quantumkeyserver.html ),”.
  17. D. Simon, N. Lawrence, J. Trevino, L. Negro, and A. Sergienko, “Quantum key distribution with Fibonacci orbital angular momentum states,” arXiv:1206.3548 (2012).
  18. D. Gauthier, H. Guilbert, Y. Zhu, M. Shi, K. McCusker, B. Christensen, P. Kwiat, T. Brougham, S. Barnett, and V. Chandar, “Quantum key distribution using hyperentanglement,” in “Quantum Information and Measurement,” (Optical Society of America, 2012).
  19. S. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett.108, 130502 (2012). [CrossRef] [PubMed]
  20. H. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett.108, 130503 (2012). [CrossRef] [PubMed]
  21. N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani, “Towards practical and fast quantum cryptography,” arXiv:0411022 (2004).
  22. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67, 661–663 (1991). [CrossRef] [PubMed]
  23. L. Duan, M. Lukin, J. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001). [CrossRef] [PubMed]
  24. E. Saglamyurek, N. Sinclair, J. Jin, J. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Quantum memory for quantum repeaters,” in “International Quantum Electronics Conference,” (Optical Society of America, 2011).
  25. B. Qi, “Quantum key distribution based on frequency-time coding: security and feasibility,” arXiv:1101.5995 (2011).
  26. J. Mower, F. Wong, J. H. Shapiro, and D. Englund, “Dense wavelength division multiplexed quantum key distribution using entangled photons,” arXiv:1110.4867v1 (2011).
  27. I. Ali-Khan and J. C. Howell, “Experimental demonstration of high two-photon time-energy entanglement,” Phys. Rev. A73, 031801 (2006). [CrossRef]
  28. H. Takesue, K. Harada, K. Tamaki, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Long-distance entanglement-based quantum key distribution experiment using practical detectors,” Opt. Express18, 16777–16787 (2010). [CrossRef] [PubMed]
  29. I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett.98, 060503 (2007). [CrossRef] [PubMed]
  30. L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A82, 013804 (2010). [CrossRef]
  31. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008). [CrossRef] [PubMed]
  32. O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009). [CrossRef] [PubMed]
  33. G. Brida, V. Caricato, M. Fedorov, M. Genovese, M. Gramegna, and S. Kulik, “Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime,” Europhys. Lett.87, 64003 (2009). [CrossRef]
  34. W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A56, 1627–1634 (1997). [CrossRef]
  35. L. Zhang, A. B. U’ren, R. Erdmann, K. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt.54, 707–719 (2007). [CrossRef]
  36. M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett.34, 2873–2875 (2009). [CrossRef] [PubMed]
  37. I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon.1, 308–437 (2009). [CrossRef]
  38. H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007). [CrossRef]
  39. S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, and T. Louis, “20-ps Timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum.60, 1104 (1989). [CrossRef]
  40. A. Lita, A. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16, 3032–3040 (2008). [CrossRef] [PubMed]
  41. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3, 696–705 (2009). [CrossRef]
  42. F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7, 210–214 (2013). [CrossRef]
  43. G. Vernam, “Cipher printing telegraph systems for secret wire and radio telegraphic communications,” Transactions of the American Institute of Electrical Engineers45, 295–301 (1926). [CrossRef]
  44. Since we do not treat finite size effects, the fraction is arbitrary, although realistically it should be large enough to suppress Poissonian errors on the estimation of error rates.
  45. W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A57, R2289–R2292 (1998). [CrossRef]
  46. C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett.84, 5304–5307 (2000). [CrossRef] [PubMed]
  47. J. Eberly, K. Chan, and C. Law, “Schmidt-mode analysis of entanglement for quantum information studies,” in “Quantum Communication and Information Technologies,” (Springer, 2003), pp. 1–12. [CrossRef]
  48. The assumption of a top-hat profile can be relaxed without changing our analysis, but the calculation in Appendix A would require numerics.
  49. L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A characterization of the single-photon sensitivity of an electron multiplying charge-coupled device,” J. Phys. B42, 114011 (2009). [CrossRef]
  50. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron.30, 1951–1963 (1994). [CrossRef]
  51. C. V. Bennett and B. H. Kolner, “Upconversion time microscope demonstrating 103 x magnification of femtosecond waveforms,” Opt. Lett.24, 783–785 (1999). [CrossRef]
  52. J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics7363–366 (2013). [CrossRef]
  53. Other phase modulation schemes such as four-wave mixing in waveguides [54] or sum-frequency generation in nonlinear crystals [51] could of course be used. Here we consider electro-optic phase modulation, which can be implemented with off-the-shelf telecoms components efficiently and with low loss.
  54. R. Salem, M. Foster, A. Turner, D. Geraghty, M. Lipson, and A. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett.33, 1047–1049 (2008). [CrossRef] [PubMed]
  55. J. Azaña, “Time-to-frequency conversion using a single time lens,” Opt. Commun.217, 205–209 (2003). [CrossRef]
  56. W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multiple modes,” Phys. Rev. A73, 063819 (2006). [CrossRef]
  57. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A64, 063815 (2001). [CrossRef]
  58. M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64, 270–272 (1994). [CrossRef]
  59. L. Zhang, C. Silberhorn, and I. A. Walmsley, “Secure quantum key distribution using continuous variables of single photons,” Phys. Rev. Lett.100, 110504 (2008). [CrossRef] [PubMed]
  60. J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti, and J. C. Howell, “EPR steering inequalities from entropic uncertainty relations,” arXiv:1303.7432 (2013).
  61. Ł. Rudnicki, S. Walborn, and F. Toscano, “Optimal uncertainty relations for extremely coarse-grained measurements,” Phys. Rev. A85, 042115 (2012). [CrossRef]
  62. J. Schneeloch, P. B. Dixon, G. A. Howland, C. J. Broadbent, and J. C. Howell, “Violation of continuous-variable Einstein-Podolsky-Rosen steering with discrete measurements,” Phys. Rev. Lett.110, 130407 (2013). [CrossRef] [PubMed]
  63. D. Tasca, L. Rudnicki, R. Gomes, F. Toscano, and S. Walborn, “Reliable entanglement detection under coarse-grained measurements,” arXiv:1210.5945 (2012).
  64. M. R. Ray and S. van Enk, “Missing data outside the detector range: application to continuous variable entanglement verification and quantum cryptography,” arXiv:1302.5087 (2013).
  65. J. M. Renes and J.-C. Boileau, “Conjectured strong complementary information tradeoff,” Phys. Rev. Lett.103, 020402 (2009). [CrossRef] [PubMed]
  66. In general the key distillation will have non-unit efficiency βsuch that I= βIBA− IBE. However high efficiencies can be achieved, with β> 90%. Although the formulas are simplified by assuming β= 1, our security analysis can be trivially extended to cover the general case.
  67. M. Krishna and K. Parthasarathy, “An entropic uncertainty principle for quantum measurements,” Sankhyâ A842–851 (2002).
  68. F. Grosshans and N. J. Cerf, “Continuous-variable quantum cryptography is secure against non-gaussian attacks,” Phys. Rev. Lett.92, 047905 (2004). [CrossRef] [PubMed]
  69. N. Beaudry, T. Moroder, and N. Lütkenhaus, “Squashing models for optical measurements in quantum communication,” Phys. Rev. Lett.101, 93601 (2008). [CrossRef]
  70. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nature Phys.3, 481 (2007). [CrossRef]
  71. M. Bourennane, A. Karlsson, G. Björk, N. Gisin, and N. Cerf, “Quantum key distribution using multilevel encoding: security analysis,” J. Phys. A35, 10065 (2002). [CrossRef]
  72. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett.88, 127902 (2002). [CrossRef] [PubMed]
  73. Eq. (27) in [71] corresponds to setting I= 0 with c→ 0, M→ Nand p→eBN.
  74. J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” arXiv:1304.7781 (2013).
  75. G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” arXiv:1304.6635 (2013).
  76. D. Payne and W. Gambling, “New silica-based low-loss optical fibre,” Electron. Lett.10, 289–290 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited