OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15974–15979

Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy

Zongyu Hou, Zhe Wang, Jianmin Liu, Weidou Ni, and Zheng Li  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15974-15979 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1121 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In our previous work, we found that there was great potential to improve the pulse-to-pulse signal repeatability using a moderate cylindrical cavity confinement. However, the improvement was achieved only with certain experimental parameters; while under other conditions, there was no improvement or even worse repeatability. In the present work, the experimental configuration was redesigned and unexpected uncertainty from the variation of the laser and cavity alignment and the laser ablated aerosols were avoided. With these two improvements, we demonstrated that the cavity can always increase the signal repeatability. In addition, image taken by ICCD verified that the confinement improved the stability of the plasma morphology as expected.

© 2013 OSA

OCIS Codes
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:

Original Manuscript: May 13, 2013
Revised Manuscript: June 18, 2013
Manuscript Accepted: June 18, 2013
Published: June 26, 2013

Zongyu Hou, Zhe Wang, Jianmin Liu, Weidou Ni, and Zheng Li, "Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy," Opt. Express 21, 15974-15979 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc.61(9), 999–1014 (2006). [CrossRef]
  2. L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, “Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation,” Opt. Express20(2), 1436–1443 (2012). [CrossRef] [PubMed]
  3. D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Express15(20), 12905–12915 (2007). [CrossRef] [PubMed]
  4. M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, and M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express18(1), 259–266 (2010). [CrossRef] [PubMed]
  5. Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010). [CrossRef]
  6. Z. Wang, L. Li, L. West, Z. Li, and W. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, B At. Spectrosc.68, 58–64 (2012). [CrossRef]
  7. N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc.65(8), 642–657 (2010). [CrossRef]
  8. L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom.26(11), 2274–2280 (2011). [CrossRef]
  9. Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, and W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom.28(1), 107–113 (2012). [CrossRef]
  10. R. Hedwig, “Confinement effect in enhancing shock wave plasma generation at low pressure by TEA CO2 laser bombardment on quartz sample,” Spectrochim. Acta, B At. Spectrosc.58(3), 531–542 (2003). [CrossRef]
  11. A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom.24(5), 602–604 (2009). [CrossRef]
  12. A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom.25(6), 837–848 (2010). [CrossRef]
  13. P. Yeates and E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys.108(9), 093306–093312 (2010). [CrossRef]
  14. M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc.59(7), 853–860 (2005). [CrossRef] [PubMed]
  15. W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, and W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett.36(15), 2961–2963 (2011). [CrossRef] [PubMed]
  16. W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express18(3), 2573–2578 (2010). [CrossRef] [PubMed]
  17. L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express19(15), 14067–14075 (2011). [CrossRef] [PubMed]
  18. Z. Wang, Z. Hou, S. L. Lui, D. Jiang, J. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express20(S6), A1011–A1018 (2012). [CrossRef]
  19. X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express19(11), 10997–11006 (2011). [CrossRef] [PubMed]
  20. H. R. Griem, ed., Plasma Spectroscopy (McGraw-Hill Inc., New York, 1964).
  21. C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc.63(9), 893–916 (2008). [CrossRef]
  22. G. Cristoforetti, A. De Giacomo, M. Dell'Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion,” Spectrochim. Acta, B At. Spectrosc.65(1), 86–95 (2010). [CrossRef]
  23. E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-Free Laser-Induced Breakdown Spectroscopy: State of the art,” Spectrochim. Acta, B At. Spectrosc.65(1), 1–14 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited