OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15998–16006

The output power and beam divergence behaviors of tapered terahertz quantum cascade lasers

YanFang Li, Jian Wang, Ning Yang, Junqi Liu, Tao Wang, Fengqi Liu, Zhanguo Wang, Weidong Chu, and Suqing Duan  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15998-16006 (2013)
http://dx.doi.org/10.1364/OE.21.015998


View Full Text Article

Enhanced HTML    Acrobat PDF (1060 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on Terahertz quantum cascade lasers with tapered waveguide structure operating at ∼ 103 μm. The tapered waveguide effect on the output power and the laser beam divergence are experimentally studied with the tapered angle ranging from 0° to 8°. It is found that the peak output power of the devices with same length reaches the maximum at about 5° ∼6° tapered angle. Meanwhile, the horizontal divergence angle of the laser beam can be greatly reduced. The existence of such optimal tapered angle is explained by the finite-element simulation with the consideration of the self-focusing effect for the devices with larger tapered angle.

© 2013 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(230.0230) Optical devices : Optical devices
(260.5950) Physical optics : Self-focusing
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 22, 2013
Revised Manuscript: June 6, 2013
Manuscript Accepted: June 13, 2013
Published: June 27, 2013

Citation
YanFang Li, Jian Wang, Ning Yang, Junqi Liu, Tao Wang, Fengqi Liu, Zhanguo Wang, Weidong Chu, and Suqing Duan, "The output power and beam divergence behaviors of tapered terahertz quantum cascade lasers," Opt. Express 21, 15998-16006 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15998


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Faist, F. Capasso, Sivco, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553–556 (1994). [CrossRef] [PubMed]
  2. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002). [CrossRef] [PubMed]
  3. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics1, 517–525 (2007). [CrossRef]
  4. C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributedfeedback grating,” Appl. Phys. Lett.92(7), 071110 (2008). [CrossRef]
  5. J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Optical and Quantum Electronics28623–645 (1996). [CrossRef]
  6. C. Pfahler, M. Eichhorn, M. T. Keleman, M. Mikulla, J. Schmitz, and J. Wagner, “Gain saturation and high-power pulsed operation of GaSb-based tapered diode lasers with separately contacted ridge and tapered section,” Appl. Phys. Lett.89, 021107 (2006). [CrossRef]
  7. H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10 W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007). [CrossRef]
  8. D. Vijayakumar, O. B. Jensen, R. Ostendorf, T. Westphalen, and B. Thestrup, “Spectral beam combining of a 980 nm tapered diode laser bar,” Opt. Express18(2), 893–898 (2010). [CrossRef] [PubMed]
  9. L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett.91, 181122 (2007). [CrossRef]
  10. S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Capasso, “Quantum cascade laser master-oscillator poweramplifier with 1.5 W output power at 300 K,” Opt. Express19, 16229–16235 (2011). [CrossRef] [PubMed]
  11. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012). [CrossRef] [PubMed]
  12. P. Rauter, S. Menzel, A.K. Goyal, B. Gökden, C.A. Wang, A. Sanchez, G.W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett101, 161117 (2012). [CrossRef]
  13. J.D. Kirch, J.C. Shin, C.-C. Chang, L.J. Mawst, D. Botez, and T. Earles, “Tapered active-region quantum cascade lasers (λ = 4.8 μm) for virtual suppression of carrier-leakage currents,” Electron. Lett.48(4), 234–235 (2012). [CrossRef]
  14. P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev.137, A801–A818 (1965). [CrossRef]
  15. C. C. Wang, “Length-dependent threshold for stimulated Raman effect and self-focusing of laser beams in liquids,” Phys. Rev. Lett.16, 344–346 (1966). [CrossRef]
  16. J. Wang, W. D. Wu, X. L. Zhang, and S. Q. Duan, “Analysis of terahertz quantum cascade laser beam,” Information and Electronic Engineering9, 365–368 (2011).
  17. A. Ciattoni, B. Crosignani, and P. D. Porto, “Vectorial analytical description of propagation of a highly nonparaxial beam,” Opt. Commun.202, 17–20 (2002). [CrossRef]
  18. S. Mariojouls, S. Morgott, A. SChflitt, M. Mikulla, J. Braunstein, G. Weimann, F. Lozes, and S. Bonnefont, “Modeling of the performance of high-brightness tapered lasers,” Proc. SPIE3944, 395–406 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited