OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 16043–16055

Flat-top and patterned-topped cone gratings for visible and mid-infrared antireflective properties

Jean-Baptiste Brückner, Judikaël Le Rouzo, Ludovic Escoubas, Gérard Berginc, Cécile Gourgon, Olivier Desplats, and Jean-Jacques Simon  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 16043-16055 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1811 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Achieving a broadband antireflection property from material surfaces is one of the highest priorities for those who want to improve the efficiency of solar cells or the sensitivity of photo-detectors. To lower the reflectance of a surface, we are concerned with the study of the optical response of flat-top and patterned-topped cone shaped silicon gratings, based on previous work exploring pyramid gratings. Through rigorous numerical methods such as Finite Different Time Domain, we first designed several flat-top structures that theoretically demonstrate an antireflective character within the middle infrared region. From the opto-geometrical parameters such as period, depth and shape of the pattern determined by numerical analysis, these structures have been fabricated using controlled slope plasma etching processes. In order to extend the antireflective properties up to the visible wavelengths, patterned-topped cones have been fabricated as well. Afterwards, optical characterizations of several samples were carried out. Thus, the performances of the flat-top and patterned-topped cones have been compared in the visible and mid infrared range.

© 2013 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(310.1210) Thin films : Antireflection coatings

ToC Category:
Diffraction and Gratings

Original Manuscript: May 8, 2013
Revised Manuscript: June 15, 2013
Manuscript Accepted: June 24, 2013
Published: June 27, 2013

Jean-Baptiste Brückner, Judikaël Le Rouzo, Ludovic Escoubas, Gérard Berginc, Cécile Gourgon, Olivier Desplats, and Jean-Jacques Simon, "Flat-top and patterned-topped cone gratings for visible and mid-infrared antireflective properties," Opt. Express 21, 16043-16055 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Engineering: R: Reports69(1-3), 1–35 (2010). [CrossRef]
  2. K. M. Baker, “Highly corrected close-packed microlens arrays and moth-eye structuring on curved surfaces,” Appl. Opt.38(2), 352–356 (1999). [CrossRef] [PubMed]
  3. D. M. Braun, “Design of single layer antireflection coatings for InP/In0.53Ga0.47As/InP photodetectors for the 1200-1600-nm wavelength range,” Appl. Opt.27(10), 2006–2011 (1988). [CrossRef] [PubMed]
  4. K. T. Park, Z. Guo, H. D. Um, J. Y. Jung, J. M. Yang, S. K. Lim, Y. S. Kim, and J. H. Lee, “Optical properties of Si microwires combined with nanoneedles for flexible thin film photovoltaics,” Opt. Express19(S1Suppl 1), A41–A50 (2011). [CrossRef] [PubMed]
  5. N. Yamada, T. Ijiro, E. Okamoto, K. Hayashi, and H. Masuda, “Characterization of antireflection moth-eye film on crystalline silicon photovoltaic module,” Opt. Express19(S2Suppl 2), A118–A125 (2011). [CrossRef] [PubMed]
  6. J. Oh, H. C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol.7(11), 743–748 (2012). [CrossRef] [PubMed]
  7. K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films516(20), 7167–7170 (2008). [CrossRef]
  8. H. A. MacLeod, Thin-Film Optical Filters (Taylor & Francis Ed. IV, (2010) p. 668.
  9. P. B. Clapham and M. C. Hutley, “Reduction of lens reflection by the ‘moth eye’ principle,” Nature244(5414), 281–282 (1973). [CrossRef]
  10. M. Born and E. Wolf, in Principle of Optics (Pergamon, 1980) pp. 705–708.
  11. E. Grann, M. G. Varga, and D. Pommet, “Optimal design for antireflective tapered two dimensional subwavelength grating structures,” J. Opt. Soc. Am. A12(2), 333–339 (1995). [CrossRef]
  12. S. K. Srivastava, D. Kumar, K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical nanowire arrays,” Sol. Energy Mater. Sol. Cells94(9), 1506–1511 (2010). [CrossRef]
  13. J. Zhou, M. Hildebrandt, and M. Lu, “Self-organized antireflecting nano-cone arrays on Si (100) induced by ion bombardment,” J. Appl. Phys.109(5), 053513 (2011). [CrossRef]
  14. H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009). [CrossRef]
  15. L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for near infrared spectral region,” Opt. Commun.226(1-6), 81–88 (2003). [CrossRef]
  16. R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of microstructured flat-top pyramids,” J. Opt. Soc. Am. A16, 19304–19309 (2008).
  17. L. Escoubas, R. Bouffaron, V. Brissonneau, J. J. Simon, G. Berginc, F. Flory, and P. Torchio, “Sand-castle biperiodic pattern for spectral and angular broadening of antireflective properties,” Opt. Lett.35(9), 1455–1457 (2010). [CrossRef] [PubMed]
  18. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled wave analysis of binary gratings,” J. Opt. Soc. Am. A12(5), 1068–1076 (1995). [CrossRef]
  19. E. D. Palik, in Handbook of Optical Constants, (Academic Press, 555–568, 1985, I).
  20. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited