OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 16056–16062

Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers

Alexey Zaytsev, Chih-Hsuan Lin, Yi-Jing You, Chia-Chun Chung, Chi-Luen Wang, and Ci-Ling Pan  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 16056-16062 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2190 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report generation of broadband supercontinuum (SC) by noise-like pulses (NLPs) with a central wavelength of 1070 nm propagating through a long piece of standard single-mode fibers (~100 meters) in normal dispersion region far from the zero-dispersion point. Theoretical simulations indicate that the physical mechanism of SC generation is due to nonlinear effects in fibers. The cascaded Raman scattering is responsible for significant spectral broadening in the longer wavelength regions whereas the Kerr effect results in smoothing of SC generated spectrum. The SC exhibits low threshold (43 nJ) and a flat spectrum over 1050-1250 nm.

© 2013 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

Original Manuscript: May 13, 2013
Revised Manuscript: June 24, 2013
Manuscript Accepted: June 24, 2013
Published: June 27, 2013

Alexey Zaytsev, Chih-Hsuan Lin, Yi-Jing You, Chia-Chun Chung, Chi-Luen Wang, and Ci-Ling Pan, "Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers," Opt. Express 21, 16056-16062 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  2. C. Lin, V. T. Nguyen, and W. G. French, “Wideband near-I.R. continuum (0.7 – 2.1 um) generated in low-loss optical fibers,” Electron. Lett.14(25), 822–823 (1978). [CrossRef]
  3. S. Martin-Lopez, P. Corredera, and M. Gonzalez-Herraez, “Cavity dispersion management in continuous-wave supercontinuum generation,” Opt. Express17(15), 12785–12793 (2009). [CrossRef] [PubMed]
  4. A. Kudlinski, G. Bouwmans, M. Douay, M. Taki, and A. Mussot, “Dispersion-engineered photonic crystal fibers for CW-pumped supercontinuum sources,” J. Lightwave Technol.27(11), 1556–1564 (2009). [CrossRef]
  5. M. Horowitz, Y. Barad, and Y. Silberberg, “Noise-like pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett.22(11), 799–801 (1997). [CrossRef] [PubMed]
  6. O. Pottiez, R. Grajales-Coutiño, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernández-García, “Adjustable noiselike pulses from a figure-eight fiber laser,” Appl. Opt.50(25), E24–E31 (2011). [CrossRef]
  7. L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, “Noise-like pulse in a gain-guided soliton fiber laser,” Opt. Express15(5), 2145–2150 (2007). [CrossRef] [PubMed]
  8. S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, “Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers,” Opt. Express17(23), 20707–20713 (2009). [CrossRef] [PubMed]
  9. J. C. Hernandez-Garcia, O. Pottieza, and J. M. Estudillo-Ayalab, “Supercontinuum generation in a standard fiber pumped by noise-like pulses from a figure-eight fiber laser,” Laser Phys.22(1), 221–226 (2012). [CrossRef]
  10. A. K. Zaytsev, C. H. Lin, Y. J. You, F. H. Tsai, C. L. Wang, and C. L. Pan, “Controllable noise-like operation regime in Yb:doped dispersion-mapped fiber ring laser,” Laser Phys. Lett.10(4), 045104 (2013). [CrossRef]
  11. G. P. Agrawal, Nonlinear Fiber Optics. 5th Ed. (Elsevier, Academic, 2013).
  12. J. M. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers, (Cambridge University, New York, 2010).
  13. J. Santhanama and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun.222(1-6), 413–420 (2003). [CrossRef]
  14. I. Ilev, H. Kumagai, K. Toyoda, and I. Koprinkov, “Highly efficient wideband continuum generation in a single-mode optical fiber by powerful broadband laser pumping,” Appl. Opt.35(15), 2548–2553 (1996). [CrossRef] [PubMed]
  15. B. Kibler, B. Barviau, C. Michel, G. Millot, and A. Picozzi, “Thermodynamic approach of supercontinuum generation,” Opt. Fiber Technol.18(5), 257–267 (2012). [CrossRef]
  16. B. Kibler, C. Michel, A. Kudlinski, B. Barviau, G. Millot, and A. Picozzi, “Emergence of spectral incoherent solitons through supercontinuum generation in a photonic crystal fiber,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(6), 066605 (2011). [CrossRef] [PubMed]
  17. R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett.37(9), 1529–1531 (2012). [CrossRef] [PubMed]
  18. R. S. Watt, C. F. Kaminski, and J. Hult, “Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy,” Appl. Phys. B90(1), 47–53 (2008). [CrossRef]
  19. H. Chen, Y. Lei, S. Chen, J. Hou, and Q. Lu, “Experimentally investigate the nonlinear amplifying process of high power picoseconds fiber amplifier,” Opt. & Las. Tech.47, 278–282 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited