OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 16086–16103

Calibration of spatial light modulators suffering from spatially varying phase response

David Engström, Martin Persson, Jörgen Bengtsson, and Mattias Goksör  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 16086-16103 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1767 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method for converting the desired phase values of a hologram to the correct pixel addressing values of a spatial light modulator (SLM), taking into account detailed spatial variations in the phase response of the SLM. In addition to thickness variations in the liquid crystal layer of the SLM, we also show that these variations in phase response can be caused by a non-uniform electric drive scheme in the SLM or by local heating caused by the incident laser beam. We demonstrate that the use of a global look-up table (LUT), even in combination with a spatially varying scale factor, generally does not yield sufficiently accurate conversion for applications requiring highly controllable output fields, such as holographic optical trapping (HOT). We therefore propose a method where the pixel addressing values are given by a three-dimensional polynomial, with two of the variables being the (x, y)-positions of the pixels, and the third their desired phase values. The coefficients of the polynomial are determined by measuring the phase response in 8×8 sub-sections of the SLM surface; the degree of the polynomial is optimized so that the polynomial expression nearly replicates the measurement in the measurement points, while still showing a good interpolation behavior in between. The polynomial evaluation increases the total computation time for hologram generation by only a few percent. Compared to conventional phase conversion methods, for an SLM with varying phase response, we found that the proposed method increases the control of the trap intensities in HOT, and efficiently prevents the appearance of strong unwanted 0th order diffraction that commonly occurs in SLM systems.

© 2013 OSA

OCIS Codes
(090.1760) Holography : Computer holography
(090.1970) Holography : Diffractive optics
(090.2890) Holography : Holographic optical elements
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(140.7010) Lasers and laser optics : Laser trapping
(230.6120) Optical devices : Spatial light modulators
(090.1995) Holography : Digital holography
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Devices

Original Manuscript: April 29, 2013
Revised Manuscript: June 10, 2013
Manuscript Accepted: June 13, 2013
Published: June 28, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

David Engström, Martin Persson, Jörgen Bengtsson, and Mattias Goksör, "Calibration of spatial light modulators suffering from spatially varying phase response," Opt. Express 21, 16086-16103 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Marom and N. Konforti, “Dynamic optical interconnections,” Opt. Lett.12, 539–541 (1987). [CrossRef] [PubMed]
  2. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holtz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. SPIE84, 268–298 (1996).
  3. E. Hällstig, J. Öhgren, L. Allard, L. Sjöqvist, D. Engström, S. Hård, D. Ågren, S. Junique, Q. Wang, and B. Noharet, “Retrocommunication utilizing electroabsorption modulators and non-mechanical beam steering,” Opt.Eng.44, 045001 (2005). [CrossRef]
  4. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett.24, 608–610 (1999). [CrossRef]
  5. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum.72, 1810–1816 (2001). [CrossRef]
  6. M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt.26, 2788–2798 (1987). [CrossRef] [PubMed]
  7. B. K. Jennison, J. P. Allebach, and D. W. Sweeney, “Efficient design of direct-binary-search computer-generated holograms,” J. Opt. Soc. Am. A8, 652–660 (1991). [CrossRef]
  8. G. Milewski, D. Engström, and J. Bengtsson, “Diffractive optical elements designed for highly precise far-field generation in the presence of artifacts typical for pixelated spatial light modulators,” Appl. Opt.46, 95–105 (2007). [CrossRef]
  9. R. W. Gerchberg and W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Optik35, 237–246 (1972).
  10. M. W. Farn, “New iterative algorithm for the design of phase-only gratings,” Proc. SPIE1555, 34–42 (1991). [CrossRef]
  11. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207, 169–175 (2002). [CrossRef]
  12. D. Engström, A. Frank, J. Backsten, M. Goksör, and Jörgen Bengtsson, “Grid-free 3D multiple spot generation with an efficient single-plane FFT-based algorithm,” Opt. Express17, 9989–10000 (2009). [CrossRef] [PubMed]
  13. S. Bianchi and R. Di Leonardo, “Real-time optical micro-manipulation using optimized holograms generated on the GPU,” Comput. Phys. Commun.181, 1442–1446 (2010). [CrossRef]
  14. M. Persson, D. Engström, and M. Goksör, “Real-time generation of fully optimized holograms for optical trapping applications,” Proc. SPIE8097,80971H (2011). [CrossRef]
  15. X. D. Xun and R. W. Cohn, “Phase calibration of spatially nonuniform spatial light modulators,” Appl. Opt.43, 6400–6406 (2004). [CrossRef] [PubMed]
  16. J. Oton, P. Ambs, M. S. Millan, and E. Perez-Cabre, “Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays,” Appl. Opt.46, 5667–5679 (2007). [CrossRef] [PubMed]
  17. D. Engström, M. Persson, and M. Goksör, “Spatial phase calibration used to improve holographic optical trapping,” in Biomedical Optics and 3-D Imaging, OSA Technical Digest (Optical Society of America, 2012), paper DSu2C.3. [CrossRef]
  18. G. Thalhammer, R. W. Bowman, G. D. Love, M. J. Padgett, and M. Ritsch-Marte, “Speeding up liquid crystal SLMs using overdrive with phase change reduction,” Opt. Express21, 1779–1797 (2013). [CrossRef] [PubMed]
  19. S. Reichelt, “Spatially resolved phase-response calibration of liquid-crystal-based spatial light modulators,” Appl. Opt.52, 2610–2618 (2013). [CrossRef] [PubMed]
  20. Z. Zhang, H. Yang, B. Robertson, M. Redmond, M. Pivnenko, N. Collings, W. A. Crossland, and D. Chu, “Diffraction based phase compensation method for phase-only liquid crystal on silicon devices in operation,” Appl. Opt.51, 3837–3846 (2012). [CrossRef] [PubMed]
  21. T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4, 388–394 (2010). [CrossRef]
  22. R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based ShackHartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt.12, 124004 (2010). [CrossRef]
  23. T. H. Barnes, K. Matsumoto, T. Eijo, K. Matsuda, and N. Ooyama, “Grating interferometer with extremely high stability, suitable for measuring small refractive index changes,” Appl. Opt.30, 745–751 (1991). [CrossRef] [PubMed]
  24. A. Bergeron, J. Gauvin, F. Gagnon, D. Gingras, H. H. Arsenault, and M. Doucet, “Phase calibration and applications of a liquid-crystal spatial light modulator,” Appl. Opt.34, 5133–5139 (1995). [CrossRef] [PubMed]
  25. Z. Zhang, G. Lu, and F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng.33, 3018–3022 (1994). [CrossRef]
  26. D. Engström, G. Milewski, J. Bengtsson, and S. Galt, “Diffraction-based determination of the phase modulation for general spatial light modulators,” Appl. Opt.45, 7195–7204 (2006). [CrossRef] [PubMed]
  27. A. Linnenberger, S. Serati, and J. Stockley, “Advances in Optical Phased Array Technology,” Proc. SPIE6304,63040T (2006).
  28. D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express17, 22718–22725 (2009). [CrossRef]
  29. M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett.18, 127–128 (1971). [CrossRef]
  30. A. Linnenberger and Teresa Ewing, Boulder Nonlinear Systems, 450 Courtney Way, #107 Lafayette, CO 80026, USA (personal communication, February 2013).
  31. Software available at http://www.physics.gu.se/forskning/komplexa-system/biophotonics/download/hotlab/
  32. M. Persson, D. Engström, and M. Goksör, “Reducing the effect of pixel crosstalk in phase only spatial light modulators,” Opt. Express20, 22334–22343 (2012). [CrossRef] [PubMed]
  33. C. Runge, “Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten,” inZeitschrift für Mathematik und Physik46,R. Mehmke and C. Runge, eds. (Druck und verlag von B. G. Teubner, Leipzig, 1901), 224–243.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited