OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 16170–16180

Nanoparticle array based optical frequency selective surfaces: theory and design

Chiya Saeidi and Daniel van der Weide  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 16170-16180 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1230 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a synthesis procedure for designing a bandstop optical frequency selective surface (FSS) composed of nanoparticle (NP) elements. The proposed FSS uses two-dimensional (2-D) periodic arrays of NPs with subwavelength unit-cell dimensions. We derive equivalent circuit for a nanoparticle array (NPA) using the closed-form solution for a 2-D NPA excited by a plane wave in the limit of the dipole approximation, which includes contribution from both individual and collective plasmon modes. Using the extracted equivalent circuit, we demonstrate synthesis of an optical FSS using cascaded NPA layers as coupled resonators, which we validate with both circuit model and full-wave simulation for a third-order Butterworth bandstop prototype.

© 2013 OSA

OCIS Codes
(290.5850) Scattering : Scattering, particles
(350.4600) Other areas of optics : Optical engineering

ToC Category:
Optical Devices

Original Manuscript: May 3, 2013
Revised Manuscript: June 17, 2013
Manuscript Accepted: June 19, 2013
Published: June 28, 2013

Chiya Saeidi and Daniel van der Weide, "Nanoparticle array based optical frequency selective surfaces: theory and design," Opt. Express 21, 16170-16180 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley-Interscience, 2005).
  2. K. Sarabandi and N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antennas and Propagat.55, 1239–1245 (2007). [CrossRef]
  3. M. Al-Joumayly and N. Behdad, “A new technique for design of low-profile, second-order, bandpass frequency selective surfaces,” IEEE Trans. Antennas and Propagat.57, 452–459 (2009). [CrossRef]
  4. S. Gupta, G. Tuttle, M. Sigalas, and K. M. Ho, “Infrared filters using metallic photonic band gap structures on flexible substrates,” Appl. Phys. Lett.71, 2412–2414 (1997). [CrossRef]
  5. H. A. Smith, M. Rebbert, and O. Sternberg, “Designer infrared filters using stacked metal lattices,” Appl. Phys. Lett.82, 3605–3607 (2003). [CrossRef]
  6. J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas and Propagat.54, 1265–1276 (2006). [CrossRef]
  7. Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92, 263106 (2008). [CrossRef]
  8. S. Govindaswamy, J. East, F. Terry, E. Topsakal, J. L. Volakis, and G. I. Haddad, “Frequency-selective surface based bandpass filters in the near-infrared region,” Microw. Opt. Technol. Lett.41, 266–269 (2004). [CrossRef]
  9. D. Van Labeke, D. Grard, B. Guizal, F. I. Baida, and L. Li, “An angle-independent Frequency Selective Surface in the optical range,” Opt. Express14, 11945–11951 (2006). [CrossRef] [PubMed]
  10. G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett.99, 033105 (2011). [CrossRef]
  11. J. Zhang, J. Y. Ou, N. Papasimakis, Y. Chen, K. F. MacDonald, and N. I. Zheludev, “Continuous metal plasmonic frequency selective surfaces,” Opt. Express19, 23279–23285 (2011). [CrossRef] [PubMed]
  12. D. H. Werner, T. S. Mayer, and C. R. Baleine, “Multi-spectral filters, mirrors and anti-reflective coatings with subwavelength periodic features for optical devices,” U.S. Patent Application 12/900,967, (April2011).
  13. A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun.285, 3412–3418 (2012). [CrossRef]
  14. A. Di Falco, Y. Zhao, and A. Alu, “Optical metasurfaces with robust angular response on flexible substrates,” Appl. Phys. Lett.99, 163110 (2011). [CrossRef]
  15. P. C. Li and E. T. Yu, “Wide-angle wavelength-selective multilayer optical metasurfaces robust to interlayer misalignment,” J. Opt. Soc. Am. B30, 27–32 (2013). [CrossRef]
  16. C. Saeidi and D. van der Weide, “Spatial filter for optical frequencies using plasmonic metasurfaces,” accepted to IEEE Int. Symp. Antennas and Propagation (APS/URSI) (2013).
  17. B. Memarzadeh and H. Mosallaei, “Layered plasmonic tripods: an infrared frequency selective surface nanofilter,” J. Opt. Soc. Am. B29, 2347–2351 (2012). [CrossRef]
  18. A. Alu and N. Engheta, “Optical wave interaction with two-dimensional arrays of plasmonic nanoparticles,” in Structured Surfaces as Optical Metamaterials, A. A. Maradudin, ed. (Cambridge University, 2011), pp. 58–93. [CrossRef]
  19. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House Publishers, 2003).
  20. A. S. Kumbhar, M. K Kinnan, and G. Chumanov, “Multipole plasmon resonances of submicron silver particles,” J. Am. Chem. Soc.127, 12444–12445 (2005). [CrossRef] [PubMed]
  21. W. H. Eggimann and R. E. Collin, “Dynamic interaction fields in a two-dimensional lattice,” IEEE Trans. Microwave Theory Tech.9, 110–115 (1961). [CrossRef]
  22. S. I. Maslovski and S. A. Tretyakov, “Full-wave interaction field in two-dimensional arrays of dipole scatterers,” Int. J. Electron. Commun.53, 135–139 (1999).
  23. Y. R. Zhen, K. H. Fung, and C. T. Chan, “Collective plasmonic modes in two-dimensional periodic arrays of metal nanoparticles,” Phys. Rev. B78, 035419 (2008). [CrossRef]
  24. R. E. Collin, Field Theory of Guided Waves (IEEE, 1991).
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370 (1972). [CrossRef]
  26. P. G. Kik, A. Maier, and H. A. Atwater, “Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources,” Phys. Rev. B69, 045418 (2004). [CrossRef]
  27. J. J. Xiao, J. P. Huang, and K. W. Yu, “Optical response of strongly coupled metal nanoparticles in dimer arrays,” Phys. Rev. B71, 045404 (2005). [CrossRef]
  28. G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures (McGraw-Hill, 1964).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited