OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 16222–16230

A polarization converter array using a twisted-azimuthal liquid crystal in cylindrical polymer cavities

Xiahui Wang, Miao Xu, Hongwen Ren, and Qionghua Wang  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 16222-16230 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1091 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a simple method to prepare an array of polarization converters using a twisted-azimuthal nematic liquid crystal (NLC) in cylindrical polymer cavities. When a NLC is filled in a cylindrical polymer cavity, LC in the cavity presents concentrically circular orientations. By treating LC on one side of the cavity with homogeneous alignment, a twisted-azimuthal texture is formed. Such a LC texture can convert a linear polarization light to either radial or azimuthal polarization light depending on the polarization direction of the incident light. The LC surface on the other side of the cavity is convex, so the light after passing through the cavity can be focused as well. The LC texture can be fixed firmly using polymer network. In comparison with previous polarization converters, our polarization converter has the merits of individually miniature size, array of pattern, and lens character. Our polarization converter array has potential applications in tight focusing, imaging, and material processing.

© 2013 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers
(220.2560) Optical design and fabrication : Propagating methods
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Optical Devices

Original Manuscript: May 14, 2013
Revised Manuscript: June 7, 2013
Manuscript Accepted: June 7, 2013
Published: June 28, 2013

Xiahui Wang, Miao Xu, Hongwen Ren, and Qionghua Wang, "A polarization converter array using a twisted-azimuthal liquid crystal in cylindrical polymer cavities," Opt. Express 21, 16222-16230 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. H. Hielscher, J. R. Mourant, and I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt.36(1), 125–135 (1997). [CrossRef] [PubMed]
  2. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A.94(10), 4853–4860 (1997). [CrossRef] [PubMed]
  3. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express12(15), 3377–3382 (2004). [CrossRef] [PubMed]
  4. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003). [CrossRef] [PubMed]
  5. E. Y. S. Yew and C. J. R. Sheppard, “Tight focusing of radially polarized Gaussian and Bessel-Gauss beams,” Opt. Lett.32(23), 3417–3419 (2007). [CrossRef] [PubMed]
  6. H. Guo, X. Weng, M. Jiang, Y. Zhao, G. Sui, Q. Hu, Y. Wang, and S. Zhuang, “Tight focusing of a higher-order radially polarized beam transmitting through multi-zone binary phase pupil filters,” Opt. Express21(5), 5363–5372 (2013). [CrossRef] [PubMed]
  7. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radiallyand azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007). [CrossRef]
  8. L. Wolff, T. Mancini, P. Pouliquen, and A. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot. Autom.13(2), 195–203 (1997). [CrossRef]
  9. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasma, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000). [CrossRef]
  10. A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D33(15), 1817–1822 (2000). [CrossRef]
  11. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett.32(11), 1468–1470 (2007). [CrossRef] [PubMed]
  12. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt.29(15), 2234–2239 (1990). [CrossRef] [PubMed]
  13. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett.27(5), 285–287 (2002). [CrossRef] [PubMed]
  14. R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys.28(Part 1, No. 9), 1730–1731 (1989). [CrossRef]
  15. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett.21(23), 1948–1950 (1996). [CrossRef] [PubMed]
  16. Y.-H. Wu, Y.-H. Lin, H. Ren, X. Nie, J.-H. Lee, and S. T. Wu, “Axially-symmetric sheared polymer network liquid crystals,” Opt. Express13(12), 4638–4644 (2005). [CrossRef] [PubMed]
  17. H. Ren, Y. H. Lin, and S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett.89(5), 051114 (2006). [CrossRef]
  18. S. C. McEldowney, D. M. Shemo, and R. A. Chipman, “Vortex retarders produced from photo-aligned liquid crystal polymers,” Opt. Express16(10), 7295–7308 (2008). [CrossRef] [PubMed]
  19. S.-W. Ko, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin, “Polarization converters based on axially symmetric twisted nematic liquid crystal,” Opt. Express18(4), 3601–3607 (2010). [CrossRef] [PubMed]
  20. Y.-D. Chen, A. Y.-G. Fuh, C.-K. Liu, and K.-T. Cheng, “Radial liquid crystal alignment based on circular rubbing of a substrate coated with poly (N-vinyl carbazole) film,” J. Phys. D44(21), 215304 (2011). [CrossRef]
  21. M. Xu, K. Park, C. Nah, M.-H. Lee, and H. Ren, “Liquid crystal polarization converters using circular-buffed polystyrene film,” Jpn. J. Appl. Phys.50(10), 102205 (2011). [CrossRef]
  22. F. Fan, T. Du, A. K. Srivastava, W. Lu, V. Chigrinov, and H. S. Kwok, “Axially symmetric polarization converter made of patterned liquid crystal quarter wave plate,” Opt. Express20(21), 23036–23043 (2012). [CrossRef] [PubMed]
  23. P. Drzaic, “A new director alignment for droplets of nematicliquid crystal with low bend-to-splay ratio,” Mol. Cryst. Lip. Cryst.154(1), 289–306 (1988).
  24. Y.-Y. Tzeng, S.-W. Ke, C.-L. Ting, A. Y.-G. Fuh, and T. H. Lin, “Axially symmetric polarization converters based on photo-aligned liquid crystal films,” Opt. Express16(6), 3768–3775 (2008). [CrossRef] [PubMed]
  25. E. Smela and L. J. Martínez‐Miranda, “Effect of substrate preparation on smectic liquid crystal alignment: A structural study,” J. Appl. Phys.73(7), 3299–3304 (1993). [CrossRef]
  26. P. G. de Gennes, The Physics ofLiquid Crystals(Clarendon, 1974).
  27. P. Yeh and C. Gu, Optics of Liquid Crystal Displays(Wiley 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1176 KB)     
» Media 2: MOV (1217 KB)     

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited