OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16296–16304

Experimental setup for investigating silicon solid phase crystallization at high temperatures

Thomas Schmidt, Annett Gawlik, Henrik Schneidewind, Andreas Ihring, Gudrun Andrä, and Fritz Falk  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 16296-16304 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1281 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An experimental setup is presented to measure and interpret the solid phase crystallization of amorphous silicon thin films on glass at very high temperatures of about 800°C. Molybdenum-SiO2-silicon film stacks were irradiated by a diode laser with a well-shaped top hat profile. From the relevant thermal and optical parameters of the system the temperature evolution can be calculated accurately. A time evolution of the laser power was applied which leads to a temperature constant in time in the center of the sample. Such a process will allow the observation and interpretation of solid phase crystallization in terms of nucleation and growth in further work.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(310.3840) Thin films : Materials and process characterization
(310.4165) Thin films : Multilayer design
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Thin Films

Original Manuscript: May 21, 2013
Manuscript Accepted: June 18, 2013
Published: July 1, 2013

Thomas Schmidt, Annett Gawlik, Henrik Schneidewind, Andreas Ihring, Gudrun Andrä, and Fritz Falk, "Experimental setup for investigating silicon solid phase crystallization at high temperatures," Opt. Express 21, 16296-16304 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Zhang and M. Wong, “Three-mask polycrystalline silicon TFT with metallic gate and junctions,” IEEE Electron Device Lett.27(7), 564–566 (2006). [CrossRef]
  2. A. Aberle, “Progress with polycrystalline silicon thin-film solar cells on glass at UNSW,” J. Cryst. Growth287(2), 386–390 (2006). [CrossRef]
  3. N. Sinh, G. Andrä, F. Falk, E. Ose, and J. Bergmann, “Optimization of layered laser crystallization for thin-film crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells74(1-4), 295–303 (2002). [CrossRef]
  4. A. Matsuda, “Microcrystalline silicon. Growth and device application,” J. Non-Cryst. Solids338-340, 1–12 (2004). [CrossRef]
  5. G. Andrä and F. Falk, “Multicrystalline silicon films with large grains on glass: preparation and applications,” Phys. Status Solidi C5(10), 3221–3228 (2008). [CrossRef]
  6. T. Chaki, “Solid-phase-epitaxy – Effects of irradiation, dopant, and pressure,” Phys. Status Solidi A142(1), 153–166 (1994). [CrossRef]
  7. C. Spinella, S. Lombardo, and F. Priolo, “Crystal grain nucleation in amorphous silicon,” J. Appl. Phys.84(10), 5383–5414 (1998). [CrossRef]
  8. U. Köster, “Crystallization of amorphous silicon films,” Phys. Status Solidi A48(2), 313–321 (1978). [CrossRef]
  9. T. Sontheimer, S. Scherf, C. Klimm, C. Becker, and B. Rech, “Characterization and control of crystal nucleation in amorphous electron beam evaporated silicon for thin film solar cells,” J. Appl. Phys. 110, 063530 (2011).
  10. G. Farhi, M. Aoucher, and T. Mohammed-Brahim, “Study of the solid phase crystallization behavior of amorphous sputtered silicon by X-ray diffraction and electrical measurements,” Sol. Energy Mater. Sol. Cells72(1-4), 551–558 (2002). [CrossRef]
  11. Y. Tao, S. Varlamov, O. Kunz, Z. Ouyang, J. Wong, T. Soderstrom, M. Wolf, and R. Egan, “Effects of annealing temperature on crystallization kinetics, film properties and cell performance of silicon thin-film solar cells on glass,” Sol. Energy Mater. Sol. Cells101, 186–192 (2012). [CrossRef]
  12. T. Schmidt, I. Hoeger, A. Gawlik, G. Andrä, and F. Falk, “Solid phase epitaxy of silicon thin films by diode laser irradiation for photovoltaic applications,” Thin Solid Films520(24), 7087–7092 (2012). [CrossRef]
  13. G. Olson and J. Roth, “Kinetics of solid phase crystallization in amorphous silicon,” Mater. Sci. Rep.3(1), 1–77 (1988). [CrossRef]
  14. G. Mannino, C. Spinella, R. Ruggeri, A. La Magna, G. Fisicaro, E. Fazio, F. Neri, and V. Privitera, “Crystallization of implanted amorphous silicon during millisecond annealing by infrared laser irradiation,” Appl. Phys. Lett.97(2), 022107 (2010). [CrossRef]
  15. W. Knaepen, C. Detavernier, R. Van Meirhaeghe, J. J. Sweet, and C. Lavoie, “In-situ X-ray Diffraction study of Metal Induced Crystallization of amorphous silicon,” Thin Solid Films516(15), 4946–4952 (2008). [CrossRef]
  16. Y. Sun, X. Zhang, and C. Grigoropoulos, “Spectral optical functions of silicon in the range of 1.13-4.96 eV at elevated temperatures,” Int. J. Heat Mass Tran.40(7), 1591–1600 (1997). [CrossRef]
  17. J. Bergmann, M. Heusinger, G. Andrä, and F. Falk, “Temperature dependent optical properties of amorphous silicon for diode laser crystallization,” Opt. Express20(S6), A856–A863 (2012). [CrossRef]
  18. B. T. Barnes, “Optical constants of Inandescent Refractory Metals,” J. Opt. Soc. Am.56(11), 1546–1549 (1966). [CrossRef]
  19. E. P. Mikol, “The thermal conductivity of molybdenum over the temperature range 1000-2100°F,” Oak Ridge National Laboratory (1952). http://www.ornl.gov/info/reports/1952/3445603609021.pdf .
  20. T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys.16(5), L97–L100 (1983). [CrossRef]
  21. B. Brixner, “Refractive-Index Interpolation for Fused Silica,” J. Opt. Soc. Am.57(5), 674–676 (1967). [CrossRef]
  22. Accuratus Corporation, “Fused Silica, SiO2 Glass Properties”. http://accuratus.com/fused.html .
  23. T. A. Redfield and J. H. Hill, “Heat capacity of Molybdenum,” Oak Ridge National Laboratory (1951). http://www.ornl.gov/info/reports/1951/3445603608861.pdf .
  24. International Molybdenum Association, “Molybdenum Properties”. http://www.imoa.info/molybdenum/molybdenum_properties.php .
  25. S. de Unamuno and E. Fogarassy, “A thermal description of the melting of c-silicon and a-silicon under pulsed excimer lasers,” Appl. Surf. Sci.36(1-4), 1–11 (1989). [CrossRef]
  26. A. Bensberg, Research and Technology Development, Schott AG (personal communication, 2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited