OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16444–16454

Multipolar effects on the dipolar polarizability of magneto-electric antennas

S. Varault, B. Rolly, G. Boudarham, G. Demésy, B. Stout, and N. Bonod  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 16444-16454 (2013)
http://dx.doi.org/10.1364/OE.21.016444


View Full Text Article

Enhanced HTML    Acrobat PDF (922 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show the important role played by the multipolar coupling between the illuminating field and magneto-electric scatterers even in the small particle limit (λ/10). A general multipolar method is presented which, for the case of planar non centrosymmetric particles, generates a simple expression for the polarizability tensor that directly links the dipolar moment to the incident field. The relevancy of this approach is demonstrated by comparing thoroughly the dipolar moments predicted by the method with full numerical calculations.

© 2013 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(290.5850) Scattering : Scattering, particles
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: April 17, 2013
Revised Manuscript: June 2, 2013
Manuscript Accepted: June 3, 2013
Published: July 2, 2013

Citation
S. Varault, B. Rolly, G. Boudarham, G. Demésy, B. Stout, and N. Bonod, "Multipolar effects on the dipolar polarizability of magneto-electric antennas," Opt. Express 21, 16444-16454 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-16444


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95, 203901 (2005). [CrossRef] [PubMed]
  2. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express14, 8827–8836 (2006). [CrossRef] [PubMed]
  3. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett.31, 1259–1261 (2006). [CrossRef] [PubMed]
  4. M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics2, 614–617 (2008). [CrossRef]
  5. I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett.103, 213902 (2009). [CrossRef]
  6. N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: Influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85, 115138 (2012). [CrossRef]
  7. G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett.105, 255501 (2010). [CrossRef]
  8. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19, 4815–4826 (2011). [CrossRef] [PubMed]
  9. A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B84, 235429 (2011). [CrossRef]
  10. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12, 3749–3755 (2012). [CrossRef] [PubMed]
  11. P. Spinelli, M. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on sub-wavelength surface mie resonators,” Nat. Commun.3(2012). [CrossRef]
  12. B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express20, 20376–20386 (2012). [CrossRef] [PubMed]
  13. J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun.3(2012). [CrossRef]
  14. S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett.13 (4), pp 1806–1809 (2013). [PubMed]
  15. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4 (2013). [CrossRef]
  16. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband Unidirectional Scattering by Magneto-Electric Core-Shell Nanoparticles,” ACS Nano6, 5489–5497 (2012). [CrossRef] [PubMed]
  17. B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless mie resonances,” Phys. Rev. B85, 245432 (2012). [CrossRef]
  18. C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B86, 125102 (2012). [CrossRef]
  19. Y. Terekhov, A. Zhuravlev, and G. Belokopytov, “The polarizability matrix of split-ring resonators,” Moscow Univ. Phys. Bull.66, 254–259 (2011). [CrossRef]
  20. D. Morits and C. Simovski, “Isotropic negative effective permeability in the visible range produced by clusters of plasmonic triangular nanoprisms,” Metamaterials5, 162–168 (2011). [CrossRef]
  21. A. Ishimaru, S.-W. Lee, Y. Kuga, and V. Jandhyala, “Generalized constitutive relations for metamaterials based on the quasi-static lorentz theory,” IEEE Trans. Antennas Propag.51, 2550–2557 (2003). [CrossRef]
  22. A. Vallecchi, M. Albani, and F. Capolino, “Collective electric and magnetic plasmonic resonances in spherical nanoclusters,” Opt. Express19, 2754–2772 (2011). [CrossRef] [PubMed]
  23. J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. A78, 043811 (2008). [CrossRef]
  24. L. Zhou and S. T. Chui, “Magnetic resonances in metallic double split rings: Lower frequency limit and bian-isotropy,” Appl. Phys. Lett.90, 041903 (2007). [CrossRef]
  25. D. Chigrin, C. Kremers, and S. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B105, 81–97 (2011). [CrossRef]
  26. P. de Vries, D. V. van Coevorden, and A. Lagendijk, “Point scatterers for classical waves,” Rev. Mod. Phys.70, 447–466 (1998). [CrossRef]
  27. I. Sersic, C. Tuambilangana, T. Kampfrath, and A. F. Koenderink, “Magnetoelectric point scattering theory for metamaterial scatterers,” Phys. Rev. B83, 245102 (2011). [CrossRef]
  28. M. Liu, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Optical activity and coupling in twisted dimer meta-atoms,” Appl. Phys. Lett.100, 111114 (2012). [CrossRef]
  29. C. Simovski and S. Tretyakov, “On effective electromagnetic parameters of artificial nanostructured magnetic materials,” Photonic. Nanostruct.8, 254–263 (2010). Tacona Photonics 2009. [CrossRef]
  30. F. Capolino, Theory and Phenomena of Metamaterials (CRC, 2009). [CrossRef]
  31. J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tüennermann, F. Lederer, and T. Pertsch, “Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition,” Opt. Express18, 14454–14466 (2010). [CrossRef] [PubMed]
  32. A. Chipouline, C. Simovskib, and S. Tretyakovb, “Basics of averaging of the Maxwell equations for bulk materials,” Metamaterials6, 77–120 (2012). [CrossRef]
  33. R. E. Raab and O. L. de Lange, Multipole Theory in Electromagnetism: Classical, Quantum, and Symmetry Aspects, with Applications (Oxford University, 2005).
  34. I. V. Lindell, A. Sihvola, and S. Tretyakov, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).
  35. P. Mazur and B. Nijboer, “On the statistical mechanics of matter in an electromagnetic field. I,” Physica XIX, 971 (1953). [CrossRef]
  36. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  37. C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, and F. Lederer, “The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach,” Opt. Express15, 8871–8883 (2007). [CrossRef] [PubMed]
  38. Y. Zeng, C. Dineen, and J. V. Moloney, “Magnetic dipole moments in single and coupled split-ring resonators,” Phys. Rev. B81, 075116 (2010). [CrossRef]
  39. G. Demésy, F. Zolla, A. Nicolet, and M. Commandré, “Versatile full-vectorial finite element model for crossed gratings,” Opt. Lett.34, 2216–2218 (2009). [CrossRef] [PubMed]
  40. J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, New York, 1999).
  41. P. Grahn, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys.14, 093033 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited