OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16455–16465

Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model

Mohammad Parvinnezhad Hokmabadi, David S. Wilbert, Patrick Kung, and Seongsin M. Kim  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 16455-16465 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1850 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Metamaterial terahertz absorbers composed of a frequency selective layer followed by a spacer and a metallic backplane have recently attracted great attention as a device to detect terahertz radiation. In this work, we present a quasistatic dynamic circuit model that can decently describe operational principle of metamaterial terahertz absorbers based on interference theory of reflected waves. The model comprises two series LC resonance components, one for resonance in frequency selective surface (FSS) and another for resonance inside the spacer. Absorption frequency is dominantly determined by the LC of FSS while the spacer LC changes slightly the magnitude and frequency of absorption. This model fits perfectly for both simulated and experimental data. By using this model, we study our designed absorber and we analyze the effect of changing in spacer thickness and metal conductivity on absorption spectrum.

© 2013 OSA

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(260.5740) Physical optics : Resonance
(040.2235) Detectors : Far infrared or terahertz
(160.3918) Materials : Metamaterials
(050.6624) Diffraction and gratings : Subwavelength structures
(110.6795) Imaging systems : Terahertz imaging

ToC Category:

Original Manuscript: April 22, 2013
Revised Manuscript: June 23, 2013
Manuscript Accepted: June 24, 2013
Published: July 2, 2013

Mohammad Parvinnezhad Hokmabadi, David S. Wilbert, Patrick Kung, and Seongsin M. Kim, "Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model," Opt. Express 21, 16455-16465 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002). [CrossRef] [PubMed]
  2. . W. Waters, L. Froidevaux, R. S. Harwood, R. F. Jarnot, H. M. Pickett, W. G. Read, P. H. Siegel, R. E. Cofield, M. J. Filipiak, D. A. Flower, J. R. Holden, G. K. Lau, N. J. Livesey, G. L. Manney, H. C. Pumphrey, M. L. Santee, D. L. Wu, D. T. Cuddy, R. R. Lay, M. S. Loo, V. S. Perun, M. J. Schwartz, P. C. Stek, R. P. Thurstans, M. A. Boyles, K. M. Chandra, M. C. Chavez, B. V. Gun-Shing Chen, R. Chudasama, R. A. Dodge, M. A. Fuller, J. H. Girard, Jiang, B. W. Yibo Jiang, R. C. Knosp, J. C. LaBelle, K. A. Lam, D. Lee, J. E. Miller, N. C. Oswald, D. M. Patel, O. Pukala, D. M. Quintero, W. Scaff, M. C. Van Snyder, P. A. Tope, Wagner, and M. J. Walch, “The earth observing system microwave limb sounder (EOS MLS) on the Aura satellite,” IEEE Trans. Geosci. Rem. Sens.44(5), 1075–1092 (2006). [CrossRef]
  3. R. Appleby, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region” IEEE Trans. AntennasPropag.55(11), 2944–2956 (2007).
  4. N. Nagai, M. Sumitomo, M. Imaizumi, M. Imaizumi, and R. Fukasawa, “Characterization of electron- or proton-irradiated Si space solar cells by THz spectroscopy,” Semicond. Sci. Technol.21(2), 201–209 (2006). [CrossRef]
  5. S. Balci, W. Baughman, D. S. Wilbert, G. Shen, P. Kung, and S. M. Kim, “Characteristics of THz carrier dynamics in GaN thin film and ZnO nanowires by temperature dependent terahertz time domain spectroscopy measurement,” Solid-State Electron.78, 68–74 (2012). [CrossRef]
  6. N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, “High-resolution waveguide THz spectroscopy of biological molecules,” Biophys. J.94(3), 1010–1020 (2008). [CrossRef] [PubMed]
  7. J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Nature Light: Science and Applications1, 1–5 (2012).
  8. M. Iwanaga, “Photonic metamaterials: a new class of materials for manipulating light waves,” Sci. Technol. Adv. Mater.13(5), 053002–053019 (2012). [CrossRef]
  9. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008). [CrossRef] [PubMed]
  10. X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express20(25), 27756–27765 (2012). [CrossRef] [PubMed]
  11. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express19(10), 9401–9407 (2011). [CrossRef] [PubMed]
  12. Q. Ye, Y. Liu, H. Lin, M. Li, and H. Yang, “Multi-band metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys., A Mater. Sci. Process.107(1), 155–160 (2012). [CrossRef]
  13. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett.37(2), 154–156 (2012). [CrossRef] [PubMed]
  14. J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express19(22), 21155–21162 (2011). [CrossRef] [PubMed]
  15. Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process.108(1), 19–24 (2012). [CrossRef]
  16. Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett.37(11), 2133–2135 (2012). [CrossRef] [PubMed]
  17. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett.36(6), 945–947 (2011). [CrossRef] [PubMed]
  18. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120, OP181 (2012). [CrossRef] [PubMed]
  19. Y. Zeng, H. T. Chen, and D. A. R. Dalvit, “The role of magnetic dipoles and non-zero-order Bragg waves in metamaterial perfect absorbers,” Opt. Express21(3), 3540–3546 (2013). [CrossRef] [PubMed]
  20. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express20(7), 7165–7172 (2012). [CrossRef] [PubMed]
  21. J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech.53(4), 1451–1461 (2005). [CrossRef]
  22. Q. Wu, M. F. Wu, F. Y. Meng, J. Wu, and L. W. Li, “Modeling the effect of n individual SRR by equivalent circuit method” IEEE Antenna and Propagation Society International Symposium, (Washington DC, 2005), 1B. pp. 631–634.
  23. Y. Nakata, T. Okada, T. Nakanishi, and M. Kitano, “Circuit model for hybridization modes in metamaterials and its analogy to quantum tight-bonding model,” Phys. Status Solidi B249(11), 2293–2302 (2012). [CrossRef]
  24. F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent circuit models for the design of metamaterial based on artificial magnetic inclusions,” IEEE Trans. Microw. Theory Tech.55(12), 2865–2873 (2007). [CrossRef]
  25. A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. Ohara, “Characterization and analysis of terahertz metamaterial based on rectangular split-ring resonators,” Appl. Phys. Lett.92(1), 011119 (2008). [CrossRef]
  26. S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron.12(6), 1097–1105 (2006). [CrossRef]
  27. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  28. T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuit,” Phys. Rev. B75(20), 205102 (2007). [CrossRef]
  29. T. D. Karamanos, A. I. Dimitriadis, and N. V. Kantartzis, “Compact double-negative metamaterials based on electric and magnetic resonators,” IEEE Antennas Wirel. Propag. Lett.11, 480–483 (2012). [CrossRef]
  30. R. J. Longley, “Double-square frequency-selective surfaces and their equivalent circuit,” Electron. Lett.19(17), 675–677 (1983). [CrossRef]
  31. F. Medina, F. Mesa, and R. Maraques, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective” IEEE Trans. Microw. Theory and Techn. 56(12) 3108–3120 (2008).
  32. M. D. Amore, V. D. Santis, and M. Feliziani, “Equivalent circuit modeling of frequency-selective surfaces based on nanostructured transparent thin films,” IEEE Trans. Magn.48(2), 703–706 (2012). [CrossRef]
  33. X. Zhang, Q. Li, W. Cao, W. Yue, J. Gu, Z. Tian, J. Han, and W. Zhang, “Equivalent circuit analysis of terahertz metamaterial filters,” Chin. Opt. Lett.9(11), 110012 (2011).
  34. Y. Q. Pang, Y. J. Zhao, and J. Wang, “Equivalent circuit model analysis of the influence of frequency selective surfaces on the frequency response of metamaterial absorbers,” J. Appl. Phys.110(2), 023704 (2011). [CrossRef]
  35. F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit based model for the interpretation of perfect metamaterial absorbers”IEEE Trans. AntennasPropag.61(3), 1201–1210 (2013).
  36. Q. Y. Wen, Y. S. Xie, H. W. Zhang, Q. H. Yang, Y. X. Li, and Y. L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express17(22), 20256–20265 (2009). [CrossRef] [PubMed]
  37. L. Butler, D. S. Wilbert, W. Baughman, S. Balci, P. Kung, S. M. Kim, M. S. Heimbeck, and H. O. Everitt, “Design, simulation and characterization of THz metamaterial absorber,” Proc. SPIE8363, 83630J, 83630J-8 (2012). [CrossRef]
  38. L. A. Butler, “Design, simulation, fabrication, and characterizations of terahertz metamaterial devices” http://acumen.lib.ua.edu/content/u0015/0000001/0000899/u0015_0000001_0000899.pdf
  39. D. S. Wilbert, M. P. Hokmabadi, J. Martinez, P. Kung, and S. M. Kim, “Terahertz metamaterial perfect absorbers for sensing and imaging,” Proc. SPIE8585, 85850Y, 85850Y-6 (2013). [CrossRef]
  40. N. Laman and D. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett.93(5), 051105 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited