OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16473–16485

Picosecond opto-acoustic interferometry and polarimetry in high-index GaAs

A. V. Scherbakov, M. Bombeck, J. V. Jäger, A. S. Salasyuk, T. L. Linnik, V. E. Gusev, D. R. Yakovlev, A. V. Akimov, and M. Bayer  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 16473-16485 (2013)
http://dx.doi.org/10.1364/OE.21.016473


View Full Text Article

Enhanced HTML    Acrobat PDF (1045 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By means of a metal opto-acoustic transducer we generate quasi-longitudinal and quasi-transverse picosecond strain pulses in a (311)-GaAs substrate and monitor their propagation by picosecond acoustic interferometry. By probing at the sample side opposite to the transducer the signals related to the compressive and shear strain pulses can be separated in time. In addition to conventional monitoring of the reflected probe light intensity we monitor also the polarization rotation of the optical probe beam. This polarimetric technique results in improved sensitivity of detection and provides comprehensive information about the elasto-optical anisotropy. The experimental observations are in a good agreement with a theoretical analysis.

© 2013 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(320.0320) Ultrafast optics : Ultrafast optics
(320.5390) Ultrafast optics : Picosecond phenomena
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 23, 2013
Manuscript Accepted: May 21, 2013
Published: July 2, 2013

Citation
A. V. Scherbakov, M. Bombeck, J. V. Jäger, A. S. Salasyuk, T. L. Linnik, V. E. Gusev, D. R. Yakovlev, A. V. Akimov, and M. Bayer, "Picosecond opto-acoustic interferometry and polarimetry in high-index GaAs," Opt. Express 21, 16473-16485 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-16473


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Thomsen, J. Strait, Z. Vardeny, H. Maris, J. Tauc, and J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett.53(10), 989–992 (1984). [CrossRef]
  2. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B Condens. Matter34(6), 4129–4138 (1986). [CrossRef] [PubMed]
  3. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the brillouin frequency range,” Opt. Commun.60(1-2), 55–58 (1986). [CrossRef]
  4. H. Lin, R. Stoner, H. Maris, and J. Tauc, “Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry,” J. Appl. Phys.69(7), 3816–3822 (1991). [CrossRef]
  5. O. B. Wright, “Thickness and sound velocity measurement in thin transparent films with laser picosecond acoustics,” J. Appl. Phys.71(4), 1617–1629 (1992). [CrossRef]
  6. K. E. O’Hara, X. Hu, and D. G. Cahill, “Characterization of nanostructured metal films by picosecond acoustics and interferometry,” J. Appl. Phys.90(9), 4852–4858 (2001). [CrossRef]
  7. O. Wright, B. Perrin, O. Matsuda, and V. Gusev, “Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses,” Phys. Rev. B64(8), 081202 (2001). [CrossRef]
  8. R. Liu, G. Sanders, C. Stanton, C. Kim, J. Yahng, Y. Jho, K. Yee, E. Oh, and D. Kim, “Femtosecond pump-probe spectroscopy of propagating coherent acoustic phonons in InxGa1−xN/GaN heterostructures,” Phys. Rev. B72(19), 195335 (2005).
  9. R. Cote and A. Devos, “Refractive index, sound velocity and thickness of thin transparent films from multiple angles picosecond ultrasonics,” Rev. Sci. Instrum.76(5), 053906 (2005). [CrossRef]
  10. J. Wang, Y. Hashimoto, J. Kono, A. Oiwa, H. Munekata, G. Sanders, and C. Stanton, “Propagating coherent acoustic phonon wave packets in InxMn1−xAs/GaSb,” Phys. Rev. B72(15), 153311 (2005). [CrossRef]
  11. P. Emery and A. Devos, “Acoustic attenuation measurements in transparent materials in the hypersonic range by picosecond ultrasonics,” Appl. Phys. Lett.89(19), 191904 (2006). [CrossRef]
  12. D. Moss, A. Akimov, S. Novikov, R. Campion, C. Staddon, N. Zainal, C. Foxon, and A. Kent, “Elasto-optical properties of zinc-blende (cubic) GaN measured by picosecond acoustics,” J. Phys. D42(11), 115412 (2009). [CrossRef]
  13. P. Babilotte, P. Ruello, D. Mounier, T. Pezeril, G. Vaudel, M. Edely, J. Breteau, V. Gusev, and K. Blary, “Femtosecond laser generation and detection of high-frequency acoustic phonons in GaAs semiconductors,” Phys. Rev. B81(24), 245207 (2010). [CrossRef]
  14. E. Pontecorvo, M. Ortolani, D. Polli, M. Ferretti, G. Ruocco, G. Cerullo, and T. Scopigno, “Visualizing coherent phonon propagation in the 100 GHz range: A broadband picosecond acoustics approach,” Appl. Phys. Lett.98(1), 011901 (2011). [CrossRef]
  15. C. Brüggemann, J. Jäger, B. A. Glavin, V. I. Belotelov, I. A. Akimov, S. Kasture, A. V. Gopal, A. S. Vengurlekar, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Studying periodic nanostructures by probing the in-sample optical far-field using coherent phonons,” Appl. Phys. Lett.101(24), 243117 (2012). [CrossRef]
  16. L. J. Shelton, F. Yang, W. K. Ford, and H. J. Maris, “Picosecond ultrasonic measurement of the velocity of phonons in water,” Phys. Status Solidi242(7), 1379–1382 (2005) (b). [CrossRef]
  17. T. Pezeril, C. Klieber, S. Andrieu, and K. A. Nelson, “Optical generation of gigahertz-frequency shear acoustic waves in liquid glycerol,” Phys. Rev. Lett.102(10), 107402 (2009). [CrossRef] [PubMed]
  18. A. A. Maznev, K. J. Manke, C. Klieber, K. A. Nelson, S. H. Baek, and C. B. Eom, “Coherent Brillouin spectroscopy in a strongly scattering liquid by picosecond ultrasonics,” Opt. Lett.36(15), 2925–2927 (2011). [CrossRef] [PubMed]
  19. C. Rossignol, N. Chigarev, M. Ducousso, B. Audoin, G. Forget, F. Guillemot, and M. Durrieu, “In Vitro picosecond ultrasonics in a single cell,” Appl. Phys. Lett.93(12), 123901 (2008). [CrossRef]
  20. M. Ducousso, O. E.-F. Zouani, C. Chanseau, C. Chollet, C. Rossignol, B. Audoin, and M.-C. Durrieu, “Evaluation of mechanical properties of fixed bone cells with sub-micrometer thickness by picosecond ultrasonics,” Eur. Phys. J. Appl. Phys.61(1), 11201 (2013). [CrossRef]
  21. T. Dehoux, N. Chigarev, C. Rossignol, and B. Audoin, “Three-dimensional elasto-optical interaction for reflectometric detection of diffracted acoustic fields in picosecond ultrasonics,” Phys. Rev. B76(2), 024311 (2007). [CrossRef]
  22. O. Matsuda and O. Wright, “Theory of detection of shear strain pulses with laser picosecond acoustics,” Anal. Sci.17, S216–S218 (2001).
  23. O. Matsuda, O. B. Wright, D. H. Hurley, V. E. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with ultrashort optical pulses,” Phys. Rev. Lett.93(9), 095501 (2004). [CrossRef] [PubMed]
  24. T. Pezeril, P. Ruello, S. Gougeon, N. Chigarev, D. Mounier, J.-M. Breteau, P. Picart, and V. Gusev, “Generation and detection of plane coherent shear picosecond acoustic pulses by lasers: Experiment and theory,” Phys. Rev. B75(17), 174307 (2007). [CrossRef]
  25. O. Matsuda, O. Wright, D. Hurley, V. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with picosecond laser acoustics,” Phys. Rev. B77(22), 224110 (2008). [CrossRef]
  26. Y.-C. Wen, T.-S. Ko, T.-C. Lu, H.-C. Kuo, J.-I. Chyi, and C.-K. Sun, “Photogeneration of coherent shear phonons in orientated wurtzite semiconductors by piezoelectric coupling,” Phys. Rev. B80(19), 195201 (2009). [CrossRef]
  27. D. Mounier, E. Morosov, P. Ruello, M. Edely, P. Babilotte, C. Mechri, J.-M. Breteau, and V. Gusev, “Application of transient femtosecond polarimetry/ellipsometry technique in picosecond laser ultrasonics,” J. Phys. Conf. Ser.92(1), 012179 (2007). [CrossRef]
  28. D. Mounier, P. Picart, P. Babilotte, P. Ruello, J.-M. Breteau, T. Pézeril, G. Vaudel, M. Kouyaté, and V. Gusev, “Jones matrix formalism for the theory of picosecond shear acoustic pulse detection,” Opt. Express18(7), 6767–6778 (2010). [CrossRef] [PubMed]
  29. S. A. Akmanov and V. E. Gusev, “Laser excitation of ultrashort acoustic pulses: New possibilities in solid-state spectroscopy, diagnostics of fast processes, and nonlinear acoustics,” Sov. Phys. Usp.35(3), 153–191 (1992). [CrossRef]
  30. O. B. Wright, “Ultrafast nonequilibrium stress generation in gold and silver,” Phys. Rev. B Condens. Matter49(14), 9985–9988 (1994). [CrossRef] [PubMed]
  31. G. Tas and H. J. Maris, “Electron diffusion in metals studied by picosecond ultrasonics,” Phys. Rev. B Condens. Matter49(21), 15046–15054 (1994). [CrossRef] [PubMed]
  32. T. Saito, O. Matsuda, and O. B. Wright, “Picosecond acoustic phonon pulse generation in nickel and chromium,” Phys. Rev. B67(20), 205421 (2003). [CrossRef]
  33. W. Chen, H. Maris, Z. Wasilewski, and S.-I. Tamura, “Attenuation and velocity of 56 GHz longitudinal phonons in gallium arsenide from 50 to 300 K,” Philos. Mag. B70(3), 687–698 (1994). [CrossRef]
  34. Z. V. Popovic, J. Spitzer, T. Ruf, M. Cardona, R. Notzel, and K. Ploog, “Folded acoustic phonons in GaAs/AlAs corrugated superlattices grown along the [311] direction,” Phys. Rev. B48(3), 1659–1664 (1993). [CrossRef]
  35. The FFT spectra are obtained in the time window of 0.5 ns starting at tp + 0.1 ns in order to exclude the time interval, in which the strain pulse is being reflected at the GaAs open surface with a phase shift.
  36. A. V. Akimov, A. V. Scherbakov, D. R. Yakovlev, C. T. Foxon, and M. Bayer, “Ultrafast band-gap shift induced by a strain pulse in semiconductor heterostructures,” Phys. Rev. Lett.97(3), 037401 (2006). [CrossRef] [PubMed]
  37. CRC Handbook of Chemistry and Physics ed. by W.M. Haynes, XCIV Edition. (CRC, 2012) Section 14: Geophysics, Astronomy, and Acoustics; Speed of Sound in Various Media.
  38. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices. (Oxford University, 1985).
  39. O. Madelung, Semiconductors: Data Handbook. (Springer, 2004).
  40. S. Adachi, “GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications,” J. Appl. Phys.58(3), R1–R29 (1985). [CrossRef]
  41. The behavior of the Brillouin signal around tp is determined by the phaseφωp. In the case of an anti-symmetric strain pulse described by the derivative of a Gaussian function with negligible after-pulse ringing we may assume φωp=0 and the Brillouin signals are maximum at t = tp. If the shape of the strain pulse is more complicated the behavior around tp may differ from the considered simple case as observed in Ref. [7].
  42. H.-Y. Hao and H. Maris, “Experiments with acoustic solitons in crystalline solids,” Phys. Rev. B64(6), 064302 (2001). [CrossRef]
  43. M. Bombeck, J. V. Jäger, A. V. Scherbakov, T. Linnik, D. R. Yakovlev, X. Liu, J. K. Furdyna, A. V. Akimov, and M. Bayer, “Magnetization precession induced by quasitransverse picosecond strain pulses in (311) ferromagnetic (Ga, Mn) As,” Phys. Rev. B87(6), 060302 (2013). [CrossRef]
  44. L. D. Landau and E. M. Lifshitz, Theory of Elasticity. (Pergamon, 1986).
  45. A. V. Scherbakov, P. J. S. van Capel, A. V. Akimov, J. I. Dijkhuis, D. R. Yakovlev, T. Berstermann, and M. Bayer, “Chirping of an optical transition by an ultrafast acoustic soliton train in a semiconductor quantum well,” Phys. Rev. Lett.99(5), 057402 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited