OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16486–16493

Controllable broadband nonlinear optical response of graphene dispersions by tuning vacuum pressure

Xin Cheng, Ningning Dong, Bin Li, Xiaoyan Zhang, Saifeng Zhang, Jia Jiao, Werner J. Blau, Long Zhang, and Jun Wang  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 16486-16493 (2013)
http://dx.doi.org/10.1364/OE.21.016486


View Full Text Article

Enhanced HTML    Acrobat PDF (1377 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nonlinear scattering, originating from laser induced solvent micro-bubbles and/or micro-plasmas, is regarded as the principal mechanism for nonlinear optical (NLO) response of graphene dispersions at ns timescale. In this work, we report the significant enhancement of NLO response of graphene dispersions by decreasing the atmospheric pressure, which has strong influence on the formation and growth of micro-bubbles and/or micro-plasmas. A modified open-aperture Z-scan apparatus in combination with a vacuum system was used to study the effect of vacuum pressure on the NLO property of graphene dispersions prepared by liquid-phase exfoliation technique. We show that the atmospheric pressure can be utilized to control and tune the nonlinear responses of the graphene dispersions for ns laser pulses at both 532 nm and 1064 nm. The lower the vacuum pressure was, the larger the NLO response was. In contrast, the NLO property of fullerene was found to be independent of the pressure change, due to its nature of nonlinear absorption. This work affords a simple method to distinguish the nonlinear scattering and absorption mechanisms for NLO nanomaterials.

© 2013 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(290.4020) Scattering : Mie theory
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 22, 2013
Revised Manuscript: June 22, 2013
Manuscript Accepted: June 24, 2013
Published: July 2, 2013

Citation
Xin Cheng, Ningning Dong, Bin Li, Xiaoyan Zhang, Saifeng Zhang, Jia Jiao, Werner J. Blau, Long Zhang, and Jun Wang, "Controllable broadband nonlinear optical response of graphene dispersions by tuning vacuum pressure," Opt. Express 21, 16486-16493 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-16486


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004). [CrossRef] [PubMed]
  2. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007). [CrossRef] [PubMed]
  3. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett.100(1), 016602 (2008). [CrossRef] [PubMed]
  4. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146(9–10), 351–355 (2008). [CrossRef]
  5. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457(7230), 706–710 (2009). [CrossRef] [PubMed]
  6. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008). [CrossRef] [PubMed]
  7. A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008). [CrossRef] [PubMed]
  8. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev.39(1), 228–240 (2009). [CrossRef] [PubMed]
  9. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010). [CrossRef]
  10. K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem.2(12), 1015–1024 (2010). [CrossRef] [PubMed]
  11. J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater.21(23), 2430–2435 (2009). [CrossRef]
  12. J. Wang and W. J. Blau, “Inorganic and hybrid nanostructures for optical limiting,” J. Opt. A11(2), 024001 (2009). [CrossRef]
  13. Y. Chen, Y. Lin, Y. Liu, J. Doyle, N. He, X. D. Zhuang, J. R. Bai, and W. J. Blau, “Carbon nanotube-based functional materials for optical limiting,” J. Nanosci. Nanotechnol.7(4-5), 1268–1283 (2007). [CrossRef] [PubMed]
  14. G. Bottari, G. de la Torre, D. M. Guldi, and T. Torres, “Covalent and noncovalent phthalocyanine-carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics,” Chem. Rev.110(11), 6768–6816 (2010). [CrossRef] [PubMed]
  15. J. Wang, Y. Chen, and W. J. Blau, “Carbon nanotubes and nanotube composites for nonlinear optical devices,” J. Mater. Chem.19(40), 7425–7443 (2009). [CrossRef]
  16. J. Wang, D. Früchtl, Z. Y. Sun, J. N. Coleman, and W. J. Blau, “Control of optical limiting of carbon nanotube dispersions by changing solvent parameters,” J. Phys. Chem. C114(13), 6148–6156 (2010). [CrossRef]
  17. J. Wang, D. Früchtl, and W. J. Blau, “The importance of solvent properties for optical limiting of carbon nanotube dispersions,” Opt. Commun.283(3), 464–468 (2010). [CrossRef]
  18. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008). [CrossRef] [PubMed]
  19. S. D. Bergin, V. Nicolosi, P. V. Streich, S. Giordani, Z. Y. Sun, A. H. Windle, P. Ryan, N. P. Niraj, Z. T. Wang, L. Carpenter, W. J. Blau, J. Boland, J. P. Hamilton, and J. N. Coleman, “Towards solutions of single-walled carbon nanotubes in common solvents,” Adv. Mater.20(10), 1876–1881 (2008). [CrossRef]
  20. J. Wang and W. J. Blau, “Solvent effect on optical limiting properties of single-walled carbon nanotube dispersions,” J. Phys. Chem. C112(7), 2298–2303 (2008). [CrossRef]
  21. J. Wang and W. J. Blau, “Nonlinear optical and optical limiting properties of individual single-walled carbon nanotubes,” Appl. Phys. B91(3–4), 521–524 (2008). [CrossRef]
  22. L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron.17(4), 299–338 (1993). [CrossRef]
  23. J. Wang and W. J. Blau, “Linear and nonlinear spectroscopic studies of phthalocyanine-carbon nanotube blends,” Chem. Phys. Lett.465(4–6), 265–271 (2008). [CrossRef]
  24. J. H. Zhu, Y. X. Li, Y. Chen, J. Wang, B. Zhang, J. J. Zhang, and W. J. Blau, “Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting,” Carbon49(6), 1900–1905 (2011). [CrossRef]
  25. Y. P. Sun and J. E. Riggs, “Organic and inorganic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem.18(1), 43–90 (1999). [CrossRef]
  26. J. J. Doyle, V. Nicolosi, S. M. O’Flaherty, D. Vengust, A. Drury, D. Mihailovic, J. N. Coleman, and W. J. Blau, “Nonlinear optical response of Mo6S4.5I4.5 nanowires,” Chem. Phys. Lett.435(1–3), 109–113 (2007). [CrossRef]
  27. N. Venkatram, D. N. Rao, and M. A. Akundi, “Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles,” Opt. Express13(3), 867–872 (2005). [CrossRef] [PubMed]
  28. S. M. O’Flaherty, S. V. Hold, M. J. Cook, T. Torres, Y. Chen, M. Hanack, and W. J. Blau, “Molecular engineering of peripherally and axially modified phthalocyanines for optical limiting and nonlinear optics,” Adv. Mater.15(1), 19–32 (2003). [CrossRef]
  29. I. M. Belousova, N. G. Mironova, and M. S. Yur'ev, “Theoretical investigation of nonlinear limiting of laser radiation power by suspensions of carbon particles,” Opt. Spectrosc.94(1), 86–91 (2003). [CrossRef]
  30. G. S. He, H. Y. Qin, and Q. D. Zheng, “Rayleigh, mie, and tyndall scatterings of polystyrene microspheres in water: wavelength, size, and angle dependences,” J. Appl. Phys.105(2), 023110 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited