OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16494–16503

Parameter space for the collective laser coupling in the laser fusion driver based on the concept of fiber amplification network

Zhihua Huang, Honghuan Lin, Dangpeng Xu, Mingzhong Li, Jianjun Wang, Ying Deng, Rui Zhang, Yongliang Zhang, Xiaocheng Tian, and Xiaofeng Wei  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 16494-16503 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1175 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Collective laser coupling of the fiber array in the inertial confinement fusion (ICF) laser driver based on the concept of fiber amplification network (FAN) is researched. The feasible parameter space is given for laser coupling of the fundamental, second and third harmonic waves by neglecting the influence of the frequency conversion on the beam quality under the assumption of beam quality factor conservation. Third harmonic laser coupling is preferred due to its lower output energy requirement from a single fiber amplifier. For coplanar fiber array, the energy requirement is around 0.4J with an effective mode field diameter of around 500μm while maintaining the fundamental mode operation which is more than one order of magnitude higher than what can be achieved with state-of-the-art technology. Novel waveguide structure needs to be developed to enlarge the fundamental mode size while mitigating the catastrophic self-focusing effect.

© 2013 OSA

OCIS Codes
(140.3290) Lasers and laser optics : Laser arrays
(080.2468) Geometric optics : First-order optics
(140.3298) Lasers and laser optics : Laser beam combining
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 22, 2013
Revised Manuscript: June 11, 2013
Manuscript Accepted: June 11, 2013
Published: July 2, 2013

Zhihua Huang, Honghuan Lin, Dangpeng Xu, Mingzhong Li, Jianjun Wang, Ying Deng, Rui Zhang, Yongliang Zhang, Xiaocheng Tian, and Xiaofeng Wei, "Parameter space for the collective laser coupling in the laser fusion driver based on the concept of fiber amplification network," Opt. Express 21, 16494-16503 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt.46, 3276–3303 (2007). [CrossRef] [PubMed]
  2. C. Lion, “The LMJ program: An overview,”J. Phys. Conf. Ser.244, 012003 (2010). [CrossRef]
  3. W. Zheng, X. Zhang, X. Wei, F. Jing, Z. Sui, K. Zheng, X. Yuan, X. Jiang, J. Su, H. Zhou, M. Li, J. Wang, D. Hu, S. He, Y. Xiang, Z. Peng, B. Feng, L. Guo, X. Li, Q. Zhu, H. Yu, Y. You, D. Fan, and W. Zhang, “Status of the SG-III solid-state laser facility,”J. Phys. Conf. Ser.112, 032009 (2008). [CrossRef]
  4. J. A. Paisner, S. A. Kumpan, W. H. Lowdermilk, J. D. Boyes, and M. S. Sorem, “Conceptual design of the national ignition facility,” Proceedings of Solid State Lasers for Application to Inertial Confinement Fusion, 2633: 2–12 (1995). [CrossRef]
  5. National Research Council, “An Assessment of the Prospects for Inertial Fusion Energy” (National Academies Press, Washington D. C., 2013).
  6. W. R. Meier, T. M. Anklam, A. C. Erlandson, R. R. Miles, A. J. Simon, R. Sawicki, and E. Storm, “Integrated process modeling for the laser inertial fusion energy (LIFE) generation system,”J. Phys. Conf. Ser.244, 032035 (2010). [CrossRef]
  7. C. Labaune, D. Hulin, A. Galvanauskas, and G. A. Mourou, “On the feasibility of a fiber-based inertial fusion laser driver,” Opt. Commun.281, 4075–4080 (2008). [CrossRef]
  8. G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, “The future is fibre accelerators,” Nat. Photon.7, 258–261 (2013). [CrossRef]
  9. C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 mu m core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett.89, 111119 (2006). [CrossRef]
  10. C. Zheng, H. Zhang, P. Yan, and M. Gong, “Low repetition rate broadband high energy and peak power nanosecond pulsed Yb-doped fiber amplifier,” Opt. Laser Technol.49, 284–287 (2013). [CrossRef]
  11. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997). [CrossRef]
  12. C. Renaud, H. Offerhaus, J. Alvarez-Chavez, J. Nilsson, W. Clarkson, P. Turner, D. Richardson, and A. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron.37, 199–206 (2001). [CrossRef]
  13. N. Hodgson and H. Weber, Laser Resonators and Beam Propagation: Fundamentals, Advanced Concepts and Applications, 2nd ed. (Springer, 2005).
  14. H. Yoda, P. Polynkin, and M. Mansuripur, “Beam Quality Factor of Higher Order Modes in a Step-Index Fiber,” J. Lightwave Technol.24, 1350 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited