OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16536–16540

Proposal of a wavelength filter with a cut corner based on Equilateral-Triangle-Resonator

Wei-Cong Yan, Zhi-You Guo, Ning Zhu, and Yu-Qiang Jiang  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 16536-16540 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (854 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an equilateral triangle resonator filter with an output waveguide and analyzed by the finite-difference time-domain technique. The filter can realize directional output with a high Q mode by means of the mode-field coupled into the output waveguide, which results a reduction in the scattering loss at the vertices. In addition, to the deformed equilateral triangle resonator filter, an optimum parameter with a cut corner of 0.23 μm, which is equal to that of the input waveguide and can be an optimal cut, is found to help increase in finesse, Q factors, extinction ratio and the output intensity on resonance of the drop port normalized with the through port .

© 2013 OSA

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(230.3120) Optical devices : Integrated optics devices
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

Original Manuscript: April 30, 2013
Revised Manuscript: June 8, 2013
Manuscript Accepted: June 12, 2013
Published: July 2, 2013

Wei-Cong Yan, Zhi-You Guo, Ning Zhu, and Yu-Qiang Jiang, "Proposal of a wavelength filter with a cut corner based on Equilateral-Triangle-Resonator," Opt. Express 21, 16536-16540 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. T. Paloczi, Y. Huang, A. Yariv, and S. Mookherjea, “Polymeric Mach-Zehnder interferometer using serially coupled microring resonators,” Opt. Express11(21), 2666–2671 (2003). [CrossRef] [PubMed]
  2. Y. Panitchob, G. S. Murugan, M. N. Zervas, P. Horak, S. Berneschi, S. Pelli, G. Nunzi Conti, and J. S. Wilkinson, “Whispering gallery mode spectra of channel waveguide coupled microspheres,” Opt. Express16(15), 11066–11076 (2008). [CrossRef] [PubMed]
  3. X. Luo and A. W. Poon, “Many-element coupled-resonator optical waveguides using gapless-coupled microdisk resonators,” Opt. Express17(26), 23617–23628 (2009). [CrossRef] [PubMed]
  4. J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of guided-mode resonance filter by cavity resonator integration,” Appl. Phys. Express5(2), 022201 (2012). [CrossRef]
  5. Y. Baryshnikov, P. Heider, W. Parz, and V. Zharnitsky, “Whispering gallery modes inside asymmetric resonant cavities,” Phys. Rev. Lett.93(13), 133902 (2004). [CrossRef] [PubMed]
  6. S. J. Wang, Y. D. Yang, and Y. Z. Huang, “Analysis of coupled microcircular resonators coupled to a bus waveguide with high output efficiency,” Opt. Lett.35(12), 1953–1955 (2010). [CrossRef] [PubMed]
  7. Y. D. Yang, S. J. Wang, and Y. Z. Huang, “Investigation of mode coupling in a microdisk resonator for realizing directional emission,” Opt. Express17(25), 23010–23015 (2009). [CrossRef] [PubMed]
  8. N. Ma, C. Li, and A. W. Poon, “Laterally coupled hexagonal micropillar resonator add –drop filters in Silicon nitride,” IEEE Photon. Technol. Lett.16(11), 2487–2489 (2004). [CrossRef]
  9. G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett.83(9), 1710–1712 (2003). [CrossRef]
  10. S. K. Kim, S. H. Kim, G. H. Kim, H. G. Park, D.-J. Shin, and Y.-H. Lee, “Highly directional emission from few-micron-size elliptical microdisks,” Appl. Phys. Lett.84(6), 861–863 (2004).
  11. J. Wiersig and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A73(3), 031802–031805 (2006). [CrossRef]
  12. M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett.88(3), 031108–031110 (2006). [CrossRef]
  13. C. Y. Fong and A. W. Poon, “Planar corner-cut square microcavities: ray optics and FDTD analysis,” Opt. Express12(20), 4864–4874 (2004). [CrossRef] [PubMed]
  14. Q. Chen, Y. D. Yang, and Y. Z. Huang, “Prediction and suppression of strong dispersive coupling in microracetrack channel drop filters,” Opt. Lett.32(13), 1851–1853 (2007). [CrossRef] [PubMed]
  15. Y. D. Yang, Y. Z. Huang, and S. J. Wang, “Mode analysis for Equilateral-Triangle-Resonator microlasers with metal confinement layers,” IEEE J. Quantum Electron.45(12), 1529–1536 (2009). [CrossRef]
  16. Y. D. Yang, Y. Z. Huang, K. J. Che, S. J. Wang, Y. H. Hu, and Y. Du, “Equilateral-Triangle and square resonator semiconductor microlasers,” IEEE J. Quantum Electron.15(3), 879–884 (2009). [CrossRef]
  17. Q. Chen, Y. H. Hu, Y. Z. Huang, Y. Du, and Z. C. Fan, “Equilateral-Triangle-Resonator injection lasers with directional emission,” IEEE J. Quantum Electron.43(6), 440–444 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited