OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16552–16560

In-line rainbow trapping based on plasmonic gratings in optical microfibers

Chunying Guan, Jinhui Shi, Ming Ding, Pengfei Wang, Ping Hua, Libo Yuan, and Gilberto Brambilla  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 16552-16560 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1912 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In-line rainbow trapping is demonstrated in an optical microfiber with a plasmonic grating. The dispersions of x- and y-polarized surface plasmon polariton (SPP) modes are analyzed in detail by the 3D finite element method (FEM). In this system, the incident light is coupled from an optical microfiber into a graded grating. The plasmonic structure shows strong localization as the dispersion curve approaches cut-off frequency. Gradually increasing the depth or width of the grating elements ensures that the cut-off frequency of the SPP mode varies with the position along the microfiber. Near-infrared light at different frequencies can be trapped in different spatial positions. The in-line rainbow trapping is important for potential applications including optical storage, slow light, optical switch and enhanced light-matter interactions in fiber integrated devices and highly integrated optical circuits.

© 2013 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(240.6680) Optics at surfaces : Surface plasmons
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 3, 2013
Revised Manuscript: June 2, 2013
Manuscript Accepted: June 5, 2013
Published: July 2, 2013

Chunying Guan, Jinhui Shi, Ming Ding, Pengfei Wang, Ping Hua, Libo Yuan, and Gilberto Brambilla, "In-line rainbow trapping based on plasmonic gratings in optical microfibers," Opt. Express 21, 16552-16560 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007). [CrossRef] [PubMed]
  2. M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3(4), 211–219 (2004). [CrossRef] [PubMed]
  3. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005). [CrossRef] [PubMed]
  4. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol.23(12), 4046–4066 (2005). [CrossRef]
  5. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999). [CrossRef]
  6. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008). [CrossRef]
  7. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005). [CrossRef] [PubMed]
  8. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005). [CrossRef] [PubMed]
  9. Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009). [CrossRef] [PubMed]
  10. Y. J. Zhou and T. J. Cui, “Broadband slow-wave systems of subwavelength thickness excited by a metal wire,” Appl. Phys. Lett.99(10), 101906 (2011). [CrossRef]
  11. G. Wang, H. Lu, and X. M. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett.101(1), 013111 (2012). [CrossRef]
  12. Q. Gan and F. Bartoli, “Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping,” Appl. Phys. Lett.98(25), 251103 (2011). [CrossRef]
  13. H. F. Hu, D. X. Ji, X. Zeng, K. Liu, and Q. Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci Rep3, 1249 (2013). [CrossRef] [PubMed]
  14. L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B80(16), 161106 (2009). [CrossRef]
  15. L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett.97(15), 153115 (2010). [CrossRef]
  16. G. X. Wang, H. Lu, X. M. Liu, and Y. K. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology23(44), 444009 (2012). [CrossRef] [PubMed]
  17. Y. Xu, J. Zhang, and G. F. Song, “Slow surface plasmons in plasmonic grating waveguide,” IEEE Photon. Technol. Lett.25(5), 410–413 (2013). [CrossRef]
  18. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003). [CrossRef] [PubMed]
  19. G. Brambilla, F. Xu, P. Horak, Y. M. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon.1(1), 107–161 (2009). [CrossRef]
  20. L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun.285(23), 4641–4647 (2012). [CrossRef]
  21. Y. M. Jung, G. Brambilla, and D. J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express17(7), 5273–5278 (2009). [CrossRef] [PubMed]
  22. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett.86(16), 161108 (2005). [CrossRef]
  23. M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett.99(5), 051105 (2011). [CrossRef]
  24. J. L. Kou, J. Feng, Q. J. Wang, F. Xu, and Y. Q. Lu, “Microfiber-probe-based ultrasmall interferometric sensor,” Opt. Lett.35(13), 2308–2310 (2010). [CrossRef] [PubMed]
  25. M. Ding, M. N. Zervas, and G. Brambilla, “Transverse excitation of plasmonic slot nano-resonators embedded in metal-coated plasmonic microfiber tips,” Appl. Phys. Lett.102(14), 141110 (2013). [CrossRef]
  26. M. Ding, M. N. Zervas, and G. Brambilla, “A compact broadband microfiber Bragg grating,” Opt. Express19(16), 15621–15626 (2011). [CrossRef] [PubMed]
  27. Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett.36(16), 3115–3117 (2011). [CrossRef] [PubMed]
  28. W. Luo, J. L. Kou, Y. Chen, F. Xu, and Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett.101(13), 133502 (2012). [CrossRef]
  29. J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express19(19), 18452–18457 (2011). [CrossRef] [PubMed]
  30. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983). [CrossRef] [PubMed]
  31. E. D. Palik, Handbook of optical constants of solids (Academic, New York, 1985).
  32. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett.90(11), 111107 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited