OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16605–16614

Studies on transmitted beam modulation effect from laser induced damage on fused silica optics

Yi Zheng, Ping Ma, Haibo Li, Zhichao Liu, and Songlin Chen  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 16605-16614 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1412 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



UV laser induced damage (LID) on exit surface of fused silica could cause modulation effect to transmitted beam and further influence downstream propagation properties. This paper presents our experimental and analytical studies on this topic. In experiment, a series of measurement instruments are applied, including beam profiler, interferometer, microscope, and optical coherent tomography (OCT). Creating and characterizing of LID on fused silica sample have been implemented. Morphological features are studied based on their particular modulation effects on transmitted beam. In theoretical investigation, analytical modeling and numerical simulation are performed. Modulation effects from amplitude, phase, and size factors are analyzed respectively. Furthermore, we have novelly designed a simplified polygon model to simulate actual damage site with multiform modulation features, and the simulation results demonstrate that the modeling is usable and representative.

© 2013 OSA

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.4670) Materials : Optical materials

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 16, 2013
Revised Manuscript: June 26, 2013
Manuscript Accepted: June 27, 2013
Published: July 2, 2013

Yi Zheng, Ping Ma, Haibo Li, Zhichao Liu, and Songlin Chen, "Studies on transmitted beam modulation effect from laser induced damage on fused silica optics," Opt. Express 21, 16605-16614 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. O. Génin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355-nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt.39(21), 3654–3663 (2000). [CrossRef] [PubMed]
  2. O. Morice, “Miro: Complete modeling and software for pulse amplification and propagation in high-power laser system,” Opt. Eng.42(6), 1530–1541 (2003). [CrossRef]
  3. S. Mainguy, B. Le Garrec, and M. Josse, “Downstream impact of flaws on the LIL/LMJ laser lines,” Proc. SPIE5991, 599105, 599105-9 (2005). [CrossRef]
  4. S. Mainguy, I. Tovena-Pecault, and B. Le Garrec, “Propagation of LIL/LMJ beams under the interaction with contamination particles,” Proc. SPIE5991, 59910G, 59910G-9 (2005). [CrossRef]
  5. M. J. Matthews, L. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream Intensification Effects Associated with CO2 Laser Mitigation of Fused Silica,” Proc. SPIE6720, 67200A, 67200A-9 (2007). [CrossRef]
  6. J. R. Schmidt, M. J. Runkel, K. E. Martin, and C. J. Stolz, “Scattering-induced downstream beam modulation by plasma scalded mirrors,” Proc. SPIE6720, 67201H, 67201H-10 (2007). [CrossRef]
  7. B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J. L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express17(14), 11469–11479 (2009). [CrossRef] [PubMed]
  8. R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express18(19), 19966–19976 (2010). [CrossRef] [PubMed]
  9. C. W. Carr, J. B. Trenholme, and M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett.90(4), 041110 (2007). [CrossRef]
  10. M. R. Kozlowski, R. Mouser, S. Maricle, P. Wegner, and T. Weiland, “Laser damage performance of fused silica optical components measured on the Beamlet laser at 351nm,” Proc. SPIE3578, 436–445 (1999). [CrossRef]
  11. S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt.41(18), 3628–3633 (2002). [CrossRef] [PubMed]
  12. E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt.45(21), 5358–5367 (2006). [CrossRef] [PubMed]
  13. I. L. Bass, V. G. Draggoo, G. M. Guss, R. P. Hackel, and M. A. Norton, “Mitigation of laser damage growth in fused silica NIF optics with a galvanometer scanned CO2 laser,” Proc. SPIE6261, 62612A, 62612A-10 (2006). [CrossRef]
  14. S. T. Yang, M. J. Matthew, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt.49(14), 2606–2616 (2010). [CrossRef]
  15. J. T. Hunt, K. R. Manes, and P. A. Renard, “Hot images from obscurations,” Appl. Opt.32(30), 5973–5982 (1993). [CrossRef] [PubMed]
  16. M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE5273, 264–271 (2004). [CrossRef]
  17. C. C. Widmayer, M. R. Nickels, and D. Milam, “Nonlinear holographic imaging of phase errors,” Appl. Opt.37(21), 4801–4805 (1998). [CrossRef] [PubMed]
  18. J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355nm) laser pulses,” J. Non-Cryst. Solids352(3), 255–272 (2006). [CrossRef]
  19. S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express10(25), 1444–1450 (2002). [CrossRef] [PubMed]
  20. C. W. Carr, M. J. Matthews, J. D. Bude, and M. L. Spaeth, “The effect of laser pulse duration on laser-induced damage in KDP and SiO2,” Proc. SPIE6403, 64030K, 64030K-9 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited