OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16629–16638

Combining near-field scanning optical microscopy with spectral interferometry for local characterization of the optical electric field in photonic structures

Johanna Trägårdh and Henkjan Gersen  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 16629-16638 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1838 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show how a combination of near-field scanning optical microscopy with crossed beam spectral interferometry allows a local measurement of the spectral phase and amplitude of light propagating in photonic structures. The method only requires measurement at the single point of interest and at a reference point, to correct for the relative phase of the interferometer branches, to retrieve the dispersion properties of the sample. Furthermore, since the measurement is performed in the spectral domain, the spectral phase and amplitude could be retrieved from a single camera frame, here in 70ms for a signal power of less than 100pW limited by the dynamic range of the 8-bit camera. The method is substantially faster than most previous time-resolved NSOM methods that are based on time-domain interferometry, which also reduced problems with drift. We demonstrate how the method can be used to measure the refractive index and group velocity in a waveguide structure.

© 2013 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(160.4760) Materials : Optical properties
(320.7100) Ultrafast optics : Ultrafast measurements
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: February 25, 2013
Revised Manuscript: May 16, 2013
Manuscript Accepted: May 17, 2013
Published: July 3, 2013

Johanna Trägårdh and Henkjan Gersen, "Combining near-field scanning optical microscopy with spectral interferometry for local characterization of the optical electric field in photonic structures," Opt. Express 21, 16629-16638 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003). [CrossRef] [PubMed]
  2. R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett.108, 227402 (2012). [CrossRef] [PubMed]
  3. L. Novotny and B. Hecht, Principles of Nano-optics(Cambridge University Press, Cambridge, 2006). [CrossRef]
  4. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nature Photonics4, 477–483 (2010). [CrossRef]
  5. D. M. Szymanski, B. D. Jones, M. S. Skolnick, A. M. Fox, D. O’Brien, T. F. Krauss, and J. S. Roberts, “Ultrafast all-optical switching in AlGaAs photonic crystal waveguide interferometers,” Appl. Phys. Lett.95, 141108 (2009). [CrossRef]
  6. P. Vasa, C. Ropers, R. Pomraenke, and C. Lienau, “Ultra-fast nano-optics,” Laser & Photon. Rev.1–25 (2009).
  7. D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” arXiv:1211.1066 [physics.optics].
  8. M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science294, 1080–1082 (2001). [CrossRef] [PubMed]
  9. A. Nesci, R. Dändliker, and H. P. Herzig, “Quantitative amplitude and phase measurement by use of a heterodyne scanning near-field optical microscope,” Opt. Lett.26, 208–210 (2001). [CrossRef]
  10. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express14(4), 1658–1672 (2006). [CrossRef] [PubMed]
  11. M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature photonics5, 283–287 (2011). [CrossRef]
  12. S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett.94, 163102 (2009). [CrossRef]
  13. M. Brehm, A. Schliesser, and F. Keilmann, “Spectroscopic near-field microscopy using frequency combs in the mid-infrared,” Opt. Express14, 11222–11233 (2006). [CrossRef] [PubMed]
  14. X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,”J. Phys. Chem. Lett.3, 1836–1841 (2012). [CrossRef]
  15. J. D. Mills, T. Chaipiboonwong, W. S. Brocklesby, M. D. B. Charlton, C. Netti, M. E. Zoorob, and J. J. Baumberg, “Group velocity measurement using spectral interference in near-field scanning optical microscopy,” Appl. Phys. Lett.89, 051101 (2006). [CrossRef]
  16. M. Burresi, D. van Oosten, B. S. Song, S. Noda, and L. Kuipers, “Ultrafast reciprocal space investigation of cavity-waveguide coupling,” Opt. Lett.36, 1827–1829 (2011). [CrossRef] [PubMed]
  17. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B12, 2467–2474 (1995). [CrossRef]
  18. C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far–field spectral interferometry,” Nano Lett.12, 45–49 (2012). [CrossRef]
  19. S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett.11, 4309–4313 (2011). [CrossRef] [PubMed]
  20. S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. Sung Lee, P. Vasa, N. Park, D. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano6(7), 6040–6048 (2012). [CrossRef] [PubMed]
  21. H. Gersen, J. P. Korterik, N. F. van Hulst, and L. Kuipers, “Tracking ultrashort pulses through dispersive media: Experiment and theory,” Phys. Rev. E68, 026604 (2003). [CrossRef]
  22. S. A. Berry, J. C. Gates, and W. S. Brocklesby, “Determination of spatio-spectral properties of individual modes within multimode waveguides using spectrally resolved near-field scanning optical microscopy,” Appl. Phys. Lett.99, 141107 (2011). [CrossRef]
  23. H. Gersen, E. M. H. P. van Dijk, J. P. Korterik, N. F. van Hulst, and L. Kuipers, “Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion,” Phys. Rev. E70, 066609 (2004). [CrossRef]
  24. D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatial-spectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B14, 2095–2098 (1997). [CrossRef]
  25. P. Bowlan, U. Fuchs, R. Trebino, and U. D. Zeitner, “Measuring the spatiotemporal electric field of tightly focused ultrashort pulses with sub-micron spatial resolution,” Opt. Express16, 13663–13675 (2008). [CrossRef] [PubMed]
  26. P. Bowlan, P. Gabolde, M. A. Coughlan, R. Trebino, and R. J. Levis, “Measuring the spatiotemporal electric field of ultrashort pulses with high spatial and spectral resolution,” J. Opt. Soc. Am. B25, A81–A92 (2008). [CrossRef]
  27. B. Alonso, Í. J. Sola, Ó. Varela, J. Hernández-Toro, C. Méndez, J. San Román, A. Zaïr, and L. Roso, “Spatiotem-poral amplitude-and-phase reconstruction by Fourier-transform of interference spectra of high-complex-beams,” J. Opt. Soc. Am. B27(5), 933–940 (2010). [CrossRef]
  28. A. Imhof, W. L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Appl. Phys. Lett.83, 2942–2945 (1999). [CrossRef]
  29. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446, 301–304 (2007). [CrossRef] [PubMed]
  30. A. Pack, M. Hietschold, and R. Wannemacher, “Propagation of femtosecond light pulses through near-field optical aperture probes,” Ultramicroscopy92, 251–264 (2002). [CrossRef] [PubMed]
  31. M. Lohmeyer, Guided waves in rectangular integrated magnetooptic devices (Cuvillier Verlag, Göttingen, 1999), code available from http://wwwhome.math.utwente.nl/∼hammerm/Wmm_Manual/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited