OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16670–16682

Broadband terahertz conductivity and optical transmission of indium-tin-oxide (ITO) nanomaterials

Chan-Shan Yang, Chan-Ming Chang, Po-Han Chen, Peichen Yu, and Ci-Ling Pan  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 16670-16682 (2013)
http://dx.doi.org/10.1364/OE.21.016670


View Full Text Article

Enhanced HTML    Acrobat PDF (5785 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Indium-tin-oxide (ITO) nanorods (NRs) and nanowhiskers (NWhs) were fabricated by an electron-beam glancing-angle deposition (GLAD) system. These nanomaterials are of interests as transparent conducting electrodes in various devices. Two terahertz (THz) time-domain spectrometers (TDS) with combined spectral coverage from 0.15 to 9.00 THz were used. These allow accurate determination of the optical and electrical properties of such ITO nanomaterials in the frequency range from 0.20 to 4.00 THz. Together with Fourier transform infrared spectroscopic (FTIR) measurements, we found that the THz and far-infrared transmittance of these nanomaterials can be as high as 70% up to 15 THz, as opposed to about 9% for sputtered ITO thin films. The complex conductivities of ITO NRs, NWhs as well films are well fitted by the Drude-Smith model. Taking into account that the volume filling factors of both type of nanomaterials are nearly same, mobilities, and DC conductivities of ITO NWhs are higher than those of NRs due to less severe carrier localization effects in the former. On the other hand, mobilities of sputtered ITO thin films are poorer than ITO nanomaterials because of larger concentration of dopant ions in films, which causes stronger carrier scattering. We note further that consideration of the extreme values of Re{σ} and Im{σ} as well the inflection points, which are functions of the carrier scattering time (τ) and the expectation value of cosine of the scattering angle (γ), provide additional criteria for accessing the accuracy of the extraction of electrical parameters of non-Drude-like materials using THz-TDS. Our studies so far indicate ITO NWhs with heights of ~1000 nm show outstanding transmittance and good electrical characteristics for applications such as transparent conducting electrodes of THz Devices.

© 2013 OSA

OCIS Codes
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(290.1350) Scattering : Backscattering
(300.6270) Spectroscopy : Spectroscopy, far infrared
(350.5400) Other areas of optics : Plasmas
(260.2065) Physical optics : Effective medium theory
(040.2235) Detectors : Far infrared or terahertz
(160.4236) Materials : Nanomaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Materials

History
Original Manuscript: May 28, 2013
Manuscript Accepted: June 21, 2013
Published: July 3, 2013

Citation
Chan-Shan Yang, Chan-Ming Chang, Po-Han Chen, Peichen Yu, and Ci-Ling Pan, "Broadband terahertz conductivity and optical transmission of indium-tin-oxide (ITO) nanomaterials," Opt. Express 21, 16670-16682 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-16670


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Shim, H. Cheun, J. Meyer, C. Fuentes-Hernandez, A. Dindar, Y. H. Zhou, D. K. Hwang, A. Kahn, and B. Kippelen, “Polyvinylpyrrolidone-modified indium tin oxide as an electron-collecting electrode for inverted polymer solar cells,” Appl. Phys. Lett.101(7), 073303 (2012). [CrossRef]
  2. Ö. Şenlik, H. Y. Cheong, and T. Yoshie, “Design of subwavelength-size, indium tin oxide (ITO)-clad optical disk cavities with quality-factors exceeding 10⁴,” Opt. Express19(23), 23469–23474 (2011). [CrossRef] [PubMed]
  3. Y.-J. Liu, C.-C. Huang, T.-Y. Chen, C.-S. Hsu, J.-K. Liou, T.-Y. Tsai, and W.-C. Liu, “Implementation of an indium-tin-oxide (ITO) direct-Ohmic contact structure on a GaN-based light emitting diode,” Opt. Express19(15), 14662–14670 (2011). [CrossRef] [PubMed]
  4. S.-Y. Liu, Y.-C. Lin, J.-C. Ye, S. J. Tu, F. W. Huang, M. L. Lee, W. C. Lai, and J. K. Sheu, “Hydrogen gas generation using n-GaN photoelectrodes with immersed Indium Tin oxide Ohmic contacts,” Opt. Express19(S6Suppl 6), A1196–A1201 (2011). [CrossRef] [PubMed]
  5. C. K. Choi, K. D. Kihm, and A. E. English, “Optoelectric biosensor using indium-tin-oxide electrodes,” Opt. Lett.32(11), 1405–1407 (2007). [CrossRef] [PubMed]
  6. P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21(16), 1618–1621 (2009). [CrossRef]
  7. P. Yu, C.-H. Chang, M.-S. Su, M.-H. Hsu, and K.-H. Wei, “Embedded indium-tin-oxide nanoelectrodes for efficiency and lifetime enhancement of polymer-based solar cells,” Appl. Phys. Lett.96(15), 153307 (2010). [CrossRef]
  8. J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Opt. Express19(S3Suppl 3), A258–A268 (2011). [CrossRef] [PubMed]
  9. C.-H. Chang, M.-H. Hsu, P.-C. Tseng, P. Yu, W.-L. Chang, W.-C. Sun, and W.-C. Hsu, “Enhanced angular characteristics of indium tin oxide nanowhisker-coated silicon solar cells,” Opt. Express19(S3Suppl 3), A219–A224 (2011). [CrossRef] [PubMed]
  10. D.-J. Seo, J.-P. Shim, S.-B. Choi, T. H. Seo, E.-K. Suh, and D.-S. Lee, “Efficiency improvement in InGaN-based solar cell s by indium tin oxide nano dots covered with ITO films,” Opt. Express20(S6), A991–A996 (2012). [CrossRef]
  11. J. W. Leem and J. S. Yu, “Indium tin oxide subwavelength nanostructures with surface antireflection and superhydrophilicity for high-efficiency Si-based thin film solar cells,” Opt. Express20(S3), A431–A440 (2012). [CrossRef] [PubMed]
  12. C.-H. Chang, P. Yu, M.-H. Hsu, P.-C. Tseng, W.-L. Chang, W.-C. Sun, W.-C. Hsu, S.-H. Hsu, and Y.-C. Chang, “Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics,” Nanotechnology22(9), 095201 (2011). [CrossRef] [PubMed]
  13. C. H. Chiu, P. Yu, C. H. Chang, C. S. Yang, M. H. Hsu, H. C. Kuo, and M. A. Tsai, “Oblique electron-beam evaporation of distinctive indium-tin-oxide nanorods for enhanced light extraction from InGaN/GaN light emitting diodes,” Opt. Express17(23), 21250–21256 (2009). [CrossRef] [PubMed]
  14. T. H. Seo, K. J. Lee, A. H. Park, C.-H. Hong, E.-K. Suh, S. J. Chae, Y. H. Lee, T. V. Cuong, V. H. Pham, J. S. Chung, E. J. Kim, and S.-R. Jeon, “Enhanced light output power of near UV light emitting diodes with graphene / indium tin oxide nanodot nodes for transparent and current spreading electrode,” Opt. Express19(23), 23111–23117 (2011). [CrossRef] [PubMed]
  15. Y. Y. Kee, S. S. Tan, T. K. Yong, C. H. Nee, S. S. Yap, T. Y. Tou, G. Sáfrán, Z. E. Horváth, J. P. Moscatello, and Y. K. Yap, “Low-temperature synthesis of indium tin oxide nanowires as the transparent electrodes for organic light emitting devices,” Nanotechnology23(2), 025706 (2012). [CrossRef] [PubMed]
  16. S. H. Lee and N. Y. Ha, “Nanostructured indium-tin-oxide films fabricated by all-solution processing for functional transparent electrodes,” Opt. Express19(22), 21803–21808 (2011). [CrossRef] [PubMed]
  17. C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-Drude behavior in indium-tin-oxide nanowhiskers and thin films by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron., accepted (2013).
  18. T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, U. C. Pernisz, and H. G. Roskos, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys.92(4), 2210–2212 (2002). [CrossRef]
  19. J. Kröll, J. Darmo, and K. Unterrainer, “Metallic wave-impedance matching layers for broadband terahertz optical systems,” Opt. Express15(11), 6552–6560 (2007). [CrossRef] [PubMed]
  20. S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10(3), 033012 (2008). [CrossRef]
  21. D. G. Cooke and P. U. Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Opt. Express16(19), 15123–15129 (2008). [CrossRef] [PubMed]
  22. C. H. Chang, P. Yu, and C. S. Yang, “Broadband and omnidirectional antireflection from conductive indium-tin-oxide nanocolumns prepared by glancing-angle deposition with nitrogen,” Appl. Phys. Lett.94(5), 051114 (2009). [CrossRef]
  23. I. Hamberg, A. Hjortsberg, and C. G. Granqvist, “High quality transparent heat reflectors of reactively evaporated indium tin oxide,” Appl. Phys. Lett.40(5), 362–364 (1982). [CrossRef]
  24. Q. Wan, Z. T. Song, S. L. Feng, and T. H. Wang, “Single-crystalline tin-doped indium oxide whiskers: synthesis and characterization,” Appl. Phys. Lett.85(20), 4759–4761 (2004). [CrossRef]
  25. S.-P. Chiu, H.-F. Chung, Y.-H. Lin, J.-J. Kai, F.-R. Chen, and J.-J. Lin, “Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K,” Nanotechnology20(10), 105203 (2009). [CrossRef] [PubMed]
  26. J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, X. C. Ma, X. D. Chen, Q. H. Xiong, H. D. Sun, and T. Wu, “UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires,” Nanotechnology22(19), 195706 (2011). [CrossRef] [PubMed]
  27. C.-S. Yang, C.-H. Chang, M.-H. Lin, P. Yu, O. Wada, and C.-L. Pan, “THz conductivities of indium-tin-oxide nanowhiskers as a graded-refractive-index structure,” Opt. Express20(S4Suppl 4), A441–A451 (2012). [CrossRef] [PubMed]
  28. C.-W. Chen, Y.-C. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, and C.-L. Pan, “Frequency-dependent complex conductivities and electric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron.46(12), 1746–1754 (2010). [CrossRef]
  29. G. M. Turner, M. C. Beard, and C. A. Schmuttenmaer, “Carrier localization and cooling in dye-sensitized nanocrystalline titanium dioxide,” J. Phys. Chem. B106(45), 11716–11719 (2002). [CrossRef]
  30. H. Němec, P. Kužel, and V. Sundström, “Far-infrared response of free charge carriers localized in semiconductor nanoparticles,” Phys. Rev. B79(11), 115309 (2009). [CrossRef]
  31. J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B110(50), 25229–25239 (2006). [CrossRef] [PubMed]
  32. G. Ma, D. Li, H. Ma, J. Shen, C. Wu, J. Ge, S. Hu, and N. Dai, “Carrier concentration dependence of terahertz transmission on conducting ZnO films,” Appl. Phys. Lett.93(21), 211101 (2008). [CrossRef]
  33. X. Zou, J. Luo, D. Lee, C. Cheng, D. Springer, S. K. Nair, S. A. Cheong, H. J. Fan, and E. E. M. Chia, “Temperature-dependent terahertz conductivity of tin oxide nanowire films,” J. Phys. D Appl. Phys.45(46), 465101 (2012). [CrossRef]
  34. D. Tsokkou, A. Othonos, and M. Zervos, “Carrier dynamics and conductivity of SnO2 nanowires investigated by time-resolved terahertz spectroscopy,” Appl. Phys. Lett.100(13), 133101 (2012). [CrossRef]
  35. I.-C. Ho, X. Guo, and X.-C. Zhang, “Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy,” Opt. Express18(3), 2872–2883 (2010). [CrossRef] [PubMed]
  36. B. Clough, J. Liu, and X.-C. Zhang, ““All air-plasma” terahertz spectroscopy,” Opt. Lett.36(13), 2399–2401 (2011). [CrossRef] [PubMed]
  37. N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, and P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express20(27), 28249–28256 (2012). [CrossRef] [PubMed]
  38. G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B16(8), 1204–1212 (1999). [CrossRef]
  39. C.-L. Pan, C.-F. Hsieh, R.-P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Opt. Express13(11), 3921–3930 (2005). [CrossRef] [PubMed]
  40. C.-S. Yang, C.-J. Lin, R.-P. Pan, C. T. Que, K. Yamamoto, M. Tani, and C.-L. Pan, “The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range,” J. Opt. Soc. Am. B27(9), 1866–1873 (2010). [CrossRef]
  41. C.-K. Lee, C.-S. Yang, S.-H. Lin, S.-H. Huang, O. Wada, and C.-L. Pan, “Effects of two-photon absorption on terahertz radiation generated by femtosecond-laser excited photoconductive antennas,” Opt. Express19(24), 23689–23697 (2011). [CrossRef] [PubMed]
  42. N. V. Smith, “Classical generalization of the Drude formula for the optical conductivity,” Phys. Rev. B64(15), 155106 (2001). [CrossRef]
  43. L. V. Titova, T. L. Cocker, D. G. Cooke, X. Wang, A. Meldrum, and F. A. Hegmann, “Ultrafast percolative transport dynamics in silicon nanocrystal films,” Phys. Rev. B83(8), 085403 (2011). [CrossRef]
  44. J. Ederth, “Electrical transport in nanoparticle thin films off gold and indium tin oxide,” Ph.D. dissertation, Dept. Mat. Science, Uppsala Univ., Uppsala, Sweden, (2003).
  45. H.-K. Nienhuys and V. Sundström, “Influence of plasmons on terahertz conductivity measurements,” Appl. Phys. Lett.87(1), 02101 (2005). [CrossRef]
  46. P. Parkinson, L.-H. James, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett.7(7), 2162–2165 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited