OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16690–16701

Optical properties of silicon germanium waveguides at telecommunication wavelengths

Kamal Hammani, Mohamed A. Ettabib, Adonis Bogris, Alexandros Kapsalis, Dimitris Syvridis, Mickael Brun, Pierre Labeye, Sergio Nicoletti, David J. Richardson, and Periklis Petropoulos  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 16690-16701 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3104 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a systematic experimental study of the linear and nonlinear optical properties of silicon-germanium (SiGe) waveguides, conducted on samples of varying cross-sectional dimensions and Ge concentrations. The evolution of the various optical properties for waveguide widths in the range 0.3 to 2 µm and Ge concentrations varying between 10 and 30% is considered. Finally, we comment on the comparative performance of the waveguides, when they are considered for nonlinear applications at telecommunications wavelengths.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.4760) Materials : Optical properties
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Integrated Optics

Original Manuscript: March 18, 2013
Revised Manuscript: April 26, 2013
Manuscript Accepted: April 26, 2013
Published: July 5, 2013

Kamal Hammani, Mohamed A. Ettabib, Adonis Bogris, Alexandros Kapsalis, Dimitris Syvridis, Mickael Brun, Pierre Labeye, Sergio Nicoletti, David J. Richardson, and Periklis Petropoulos, "Optical properties of silicon germanium waveguides at telecommunication wavelengths," Opt. Express 21, 16690-16701 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010). [CrossRef]
  2. O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express12(5), 829–834 (2004). [CrossRef] [PubMed]
  3. E. Dulkeith, Y. A. Vlasov, X. G. Chen, N. C. Panoiu, and R. M. Osgood., “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express14(12), 5524–5534 (2006). [CrossRef] [PubMed]
  4. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mu m wavelength,” Appl. Phys. Lett.80(3), 416–418 (2002). [CrossRef]
  5. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express13(12), 4629–4637 (2005). [CrossRef] [PubMed]
  6. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006). [CrossRef] [PubMed]
  7. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 µm,” Opt. Express10(22), 1305–1313 (2002). [CrossRef] [PubMed]
  8. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express12(21), 5269–5273 (2004). [CrossRef] [PubMed]
  9. H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433(7023), 292–294 (2005). [CrossRef] [PubMed]
  10. H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol.23(6), 064007 (2008). [CrossRef]
  11. J. P. Douglas, “Si/SiGe heterostructures: from material and physics to devices and circuits,” Semicond. Sci. Technol.19(10), R75–R108 (2004). [CrossRef]
  12. P. Chaisakul, D. Marris-Morini, M.-S. Rouifed, G. Isella, D. Chrastina, J. Frigerio, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “23 GHz Ge/SiGe multiple quantum well electro-absorption modulator,” Opt. Express20(3), 3219–3224 (2012). [CrossRef] [PubMed]
  13. L. Tsybeskov and D. J. Lockwood, “Silicon-Germanium nanostructures for light emitters and on-chip optical interconnects,” Proc. IEEE97(7), 1284–1303 (2009). [CrossRef]
  14. P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, M. S. Rouifed, X. Le Roux, S. Edmond, E. Cassan, J. R. Coudevylle, and L. Vivien, “10-Gb/s Ge/SiGe multiple quantum-well waveguide photodetector,” IEEE Photon. Technol. Lett.23(20), 1430–1432 (2011). [CrossRef]
  15. N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys.110(1), 011301 (2011). [CrossRef]
  16. Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, and O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express16(14), 10596–10610 (2008). [CrossRef] [PubMed]
  17. J. Humlícek, A. Röseler, T. Zettler, M. G. Kekoua, and E. V. Khoutsishvili, “Infrared refractive index of germanium-silicon alloy crystals,” Appl. Opt.31(1), 90–94 (1992). [CrossRef] [PubMed]
  18. H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors,” J. Phys. At. Mol. Opt. Phys.39(12), 2737–2746 (2006). [CrossRef]
  19. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15(25), 16604–16644 (2007). [CrossRef] [PubMed]
  20. G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt.2(6), 683–700 (1993). [CrossRef]
  21. H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum-well waveguides,” J. Appl. Phys.70(7), 3992–3994 (1991). [CrossRef]
  22. T. K. Liang and H. K. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron.10(5), 1149–1153 (2004). [CrossRef]
  23. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett.90(19), 191104 (2007). [CrossRef]
  24. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 µm,” Opt. Lett.21(24), 1966–1968 (1996). [CrossRef] [PubMed]
  25. A. Lamminpaa, T. Niemi, E. Ikonen, P. Marttila, and H. Ludvigsen, “Effects of dispersion on nonlinearity measurement of optical fibers,” Opt. Fiber Technol.11(3), 278–285 (2005). [CrossRef]
  26. E. Dulkeith, F. N. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express14(9), 3853–3863 (2006). [CrossRef] [PubMed]
  27. S. Mas, J. Matres, J. Marti, and C. J. Oton, “Accurate chromatic dispersion characterization of photonic integrated circuits,” IEEE Photon. J.4(3), 825–831 (2012). [CrossRef]
  28. B. Batagelj, “Conversion efficiency of fiber wavelength converter based on degenerate FWM,” in 2nd International Conference on Transparent Optical Networks (ICTON), (2000), pp. 179–182. [CrossRef]
  29. N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron.23(7), 1205–1210 (1987). [CrossRef]
  30. T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express17(20), 17357–17368 (2009). [CrossRef] [PubMed]
  31. K. W. DeLong, K. B. Rochford, and G. I. Stegeman, “Effect of two-photon absorption on all-optical guided-wave devices,” Appl. Phys. Lett.55(18), 1823–1825 (1989). [CrossRef]
  32. V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett.14(20), 1140–1142 (1989). [CrossRef] [PubMed]
  33. M. A. Ettabib, K. Hammani, F. Parmigiani, L. Jones, A. Kapsalis, A. Bogris, D. Syvridis, M. Brun, P. Labeye, S. Nicoletti, and P. Petropoulos, “FWM-based wavelength conversion in a silicon germanium waveguide,” in OFC/NFOEC (Anaheim, CA, USA, 2013), p. OTh1C.4.
  34. M. A. Ettabib, K. Hammani, F. Parmigiani, L. Jones, A. Kapsalis, A. Bogris, D. Syvridis, M. Brun, P. Labeye, S. Nicoletti, and P. Petropoulos, “FWM-based wavelength conversion of 40 Gbaud PSK signals in a silicon germanium waveguide,” Opt. Express (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited