OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16722–16735

Coherently wavelength injection-locking a 600-μm long cavity colorless laser diode for 16-QAM OFDM at 12 Gbit/s over 25-km SMF

Yi-Cheng Li, Yu-Chieh Chi, Min-Chi Cheng, I-Cheng Lu, Jason Chen, and Gong-Ru Lin  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 16722-16735 (2013)
http://dx.doi.org/10.1364/OE.21.016722


View Full Text Article

Enhanced HTML    Acrobat PDF (3900 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The coherent injection-locking and directly modulation of a long-cavity colorless laser diode with 1% end-facet reflectance and weak-resonant longitudinal modes is employed as an universal optical transmitter to demonstrated for optical 16-QAM OFDM transmission at 12 Gbit/s over 25 km in a DWDM-PON system. The optimized bias current of 30 mA (~1.5Ith) with corresponding extinction ratio (ER) of 6 dB and the external injection power of −9 dBm is (are) required for such a wavelength-locked universal transmitter to carry the 16-QAM and 122-subcarrier formatted OFDM and data-stream. By increasing external injection-locking from −9 dBm to 0 dBm, the peak-to-peak chirp of the OFDM data stream reduces from 7.7 to 5.4 GHz. The side mode suppression ratio (SMSR) of up to 50 dB is achieved with wider detuning range between −0.5 nm to 2.0 nm under an injection power of 0 dBm. By modulating such a colorless laser diode with an OFDM data stream of 122 subcarriers at a central carrier frequency of 1.5625 GHz and a total bandwidth of 3 GHz, the transmission data rate of up to 12 Gbit/s in standard single-mode fiber over 25 km is demonstrated to achieve an error vector magnitude (EVM) of 5.435%. Such a universal colorless DWDM-PON transmitter can deliver the optical OFDM data-stream at 12 Gbit/s QAM-OFDM data after 25-km transmission with a receiving power sensitivity of −7 dBm at BER of 3.6×10−7 when pre-amplifying the OFDM data by 5 dB.

© 2013 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4080) Fiber optics and optical communications : Modulation
(140.3520) Lasers and laser optics : Lasers, injection-locked

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 9, 2013
Revised Manuscript: May 4, 2013
Manuscript Accepted: May 4, 2013
Published: July 5, 2013

Citation
Yi-Cheng Li, Yu-Chieh Chi, Min-Chi Cheng, I-Cheng Lu, Jason Chen, and Gong-Ru Lin, "Coherently wavelength injection-locking a 600-μm long cavity colorless laser diode for 16-QAM OFDM at 12 Gbit/s over 25-km SMF," Opt. Express 21, 16722-16735 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-16722


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Prat, C. Arellano, V. Polo, and C. Bock, “Optical network unit based on a bidirectional reflective semiconductor optical amplifier for fiber-to-the-home networks,” IEEE Photon. Technol. Lett.17(1), 250–252 (2005). [CrossRef]
  2. W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005). [CrossRef]
  3. H.-D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett.12(8), 1067–1069 (2000). [CrossRef]
  4. W. Hofmann, E. Wong, G. Bohm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55-µm VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett.20(4), 291–293 (2008). [CrossRef]
  5. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Netw.4(11), 737–758 (2005). [CrossRef]
  6. Y.-H. Lin, C.-J. Lin, G.-C. Lin, and G.-R. Lin, “Saturated signal-to-noise ratio of up-stream WRC-FPLD transmitter injection-locked by down-stream data-erased ASE carrier,” Opt. Express19(5), 4067–4075 (2011). [CrossRef] [PubMed]
  7. G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON Application,” J. Lightwave Technol.28(20), 2925–2932 (2010). [CrossRef]
  8. K.-I. Suzuki, H. Masuda, S. Kawai, K. Aida, and K. Nakagawa, “Bidirectional 10-channel 2.5 Gbit/s WDM transmission over 250km using 76nm (1531-1607nm) gain-band bidirectional erbium-doped fibre amplifiers,” Electron. Lett.33(23), 1967–1968 (1997). [CrossRef]
  9. G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Cheng, “Comparison on injection-locked fabry–perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Technol.27(14), 2779–2785 (2009). [CrossRef]
  10. S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, and C.-H. Lee, “Dense WDM-PON based on wavelength locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett.17(7), 1579–1581 (2005). [CrossRef]
  11. Y. J. Wen and C. J. Chae, “WDM-PON upstream transmission using Fabry–Perot laser diodes externally injected by polarization-insensitive spectrum-sliced supercontinuum pulses,” Opt. Commun.260(2), 691–695 (2006). [CrossRef]
  12. S.-Y. Lin, Y.-C. Chi, H.-L. Wang, G.-C. Lin, J.-W. Liaw, and G.-R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron., 19, (2013). (to be published)
  13. Z. Xu, Y.-J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes,” Opt. Express15(6), 2953–2962 (2007). [CrossRef] [PubMed]
  14. G.-R. Lin, T.-K. Chen, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “A weak-resonant-cavity Fabry–Perot laser diode with injection-locking mode number-dependent transmission and noise performances,” J. Lightwave Technol.28(9), 1349–1355 (2010). [CrossRef]
  15. G.-R. Lin, T.-K. Cheng, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “Suppressing chirp and power penalty of channelized ASE injection-locked mode-number tunable weak-resonant-cavity FPLD transmitter,” IEEE J. Quantum Electron.45(9), 1106–1113 (2009). [CrossRef]
  16. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006). [CrossRef]
  17. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16(2), 841–859 (2008). [CrossRef] [PubMed]
  18. J. M. Tang, P. M. Lane, and K. A. Shore, “High-speed transmission of adaptively modulated optical OFDM signals over multimode fibres using directly modulated DFBs,” J. Lightwave Technol.24(1), 429–441 (2006). [CrossRef]
  19. J. Yu, M. F. Huang, D. Qian, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008). [CrossRef]
  20. R.-P. Giddings, X.-Q. Jin, E. Hugues-Salas, E. Giacoumidis, J.-L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express18(6), 5541–5555 (2010). [CrossRef] [PubMed]
  21. C.-W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett.21(11), 715–717 (2009). [CrossRef]
  22. C.-W. Chow, C.-H. Yeh, C.-H. Wang, F.-Y. Shih, C.-L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express16(16), 12096–12101 (2008). [CrossRef] [PubMed]
  23. W.-R. Peng, J. Chen, and S. Chi, “On the phase noise impact in direct-detection optical OFDM transmission,” IEEE Photon. Technol. Lett.22(9), 649–651 (2010). [CrossRef]
  24. J. L. Wei, X. Q. Jin, and J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier-suppressed single-sideband optical OFDM signals over IMDD SMF systems,” J. Lightwave Technol.27(13), 2412–2419 (2009). [CrossRef]
  25. W.-J. Jiang, C.-T. Lin, A. Ng’oma, P.-T. Shih, J. Chen, M. Sauer, F. Annunziata, and S. Chi, “Simple 14-Gb/s short-range radio-over-fiber system employing a single-electrode MZM for 60-GHz wireless applications,” J. Lightwave Technol.28(16), 2238–2246 (2010). [CrossRef]
  26. C.-T. Lin, J. Chen, P.-T. Shih, W.-J. Jiang, and S. Chi, “Ultra-high data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and OFDM formats,” J. Lightwave Technol.28(16), 2296–2306 (2010). [CrossRef]
  27. C.-T. Lin, Y.-M. Lin, J. J. Chen, S.-P. Dai, P. T. Shih, P.-C. Peng, and S. Chi, “Optical direct-detection OFDM signal generation for radio-over-fiber link using frequency doubling scheme with carrier suppression,” Opt. Express16(9), 6056–6063 (2008). [CrossRef] [PubMed]
  28. G.-R. Lin, Y.-C. Chi, Y.-C. Li, and J. Chen, “Using a L-Band Weak-Resonant-Cavity FPLD for subcarrier amplitude pre-leveled 16-QAM-OFDM transmission at 20 Gbit/s,” J. Lightwave Technol.31(7), 1079–1087 (2013). [CrossRef]
  29. J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol.27(16), 3678–3688 (2009). [CrossRef]
  30. Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express20(18), 20071–20077 (2012). [CrossRef] [PubMed]
  31. Y.-C. Chi, Y.-C. Li, and G.-R. Lin, “Specific jacket SMA-connected TO-can package FPLD transmitter with direct modulation bandwidth beyond 6 GHz for 256-QAM single or multisubcarrier OOFDM up to 15 Gb/s,” J. Lightwave Technol.31(1), 28–35 (2013). [CrossRef]
  32. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron.18(6), 976–983 (1982). [CrossRef]
  33. F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor lasers with external light injection,” IEEE J. Quantum Electron.21(7), 784–793 (1985). [CrossRef]
  34. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity Resonance Shift and Bandwidth Enhancement in Semiconductor Lasers with Strong Light Injection,” IEEE J. Quantum Electron.39(10), 1196–1204 (2003). [CrossRef]
  35. L. A. Coldren and S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits,” (Wiley, New York, 1997).
  36. C.-C. Lin, Y.-C. Chi, H.-C. Kuo, P.-C. Peng, C. J. Chang-Hasnain, and G.-R. Lin, “Beyond-bandwidth electrical pulse modulation of a TO-can packaged VCSEL for 10 Gbit/s injection-locked NRZ-to-RZ transmission,” J. Lightwave Technol.29(6), 830–841 (2011). [CrossRef]
  37. K. Kikuchi and T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3 µm InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron21(11), 1814–1818 (1985). [CrossRef]
  38. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18(2), 259–264 (1982). [CrossRef]
  39. Y.-H. Lin, G.-C. Lin, H.-L. Wang, Y.-C. Chi, and G.-R. Lin, “Compromised extinction and signal-to-noise ratios of weak-resonant-cavity laser diode transmitter injected by channelized and amplitude squeezed spontaneous-emission,” Opt. Express18(5), 4457–4468 (2010). [CrossRef] [PubMed]
  40. G.-R. Lin, Y.-C. Chi, Y.-S. Liao, H.-C. Kuo, Z.-W. Liao, H.-L. Wang, and G.-C. Lin, “A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission,” Opt. Express20(13), 13622–13635 (2012). [CrossRef] [PubMed]
  41. L. Hanzo, W. Webb, and T. Keller, Single- and Multi-Carrier Quadrature Amplitude Modulation –Principles and Applications for Personal Communications, WLANS and Broadcasting (John Wiley & Sons, Ltd, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited