OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16799–16813

Fabrication of spherical mitigation pit on KH2PO4 crystal by micro-milling and modeling of its induced light intensification

Jian Cheng, Mingjun Chen, Wei Liao, Haijun Wang, Yong Xiao, and Mingquan Li  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 16799-16813 (2013)
http://dx.doi.org/10.1364/OE.21.016799


View Full Text Article

Enhanced HTML    Acrobat PDF (16301 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Micro-machining is the most promising method for KH2PO4 crystal to mitigate the surface damage growth in high power laser system. In this work, spherical mitigation pit is fabricated by micro-milling with an efficient machining procedure. The light intensification caused by rear surface features before and after mitigation is numerically modeled based on the finite-difference time-domain method. The results indicate that the occurrence of total internal reflections should be responsible for the largest light intensification inside the crystal. For spherical pits after mitigation, the light intensification can be greatly alleviated by preventing the occurrence of total internal reflections. The light intensification caused by spherical mitigation pit is strongly dependent on the width-depth ratio and it is suggested that the width-depth ratio of spherical mitigation pit must be devised to be larger than 5.0 to achieve the minimal light intensification for the mitigation of surface damage growth. Laser damage tests for KH2PO4 crystal validate that the laser damage resistance of initially damaged surface can be retrieved to near the level of ideal surface by replacing initial damage site with predesigned mitigation pit.

© 2013 OSA

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.4330) Materials : Nonlinear optical materials
(220.4610) Optical design and fabrication : Optical fabrication

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: April 19, 2013
Revised Manuscript: June 26, 2013
Manuscript Accepted: June 27, 2013
Published: July 5, 2013

Citation
Jian Cheng, Mingjun Chen, Wei Liao, Haijun Wang, Yong Xiao, and Mingquan Li, "Fabrication of spherical mitigation pit on KH2PO4 crystal by micro-milling and modeling of its induced light intensification," Opt. Express 21, 16799-16813 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-16799


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev.47, 113–152 (2002). [CrossRef]
  2. S. Reyné, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Laser-induced damage of KDP crystals by 1ω nanosecond pulses: influence of crystal orientation,” Opt. Express17(24), 21652–21665 (2009). [CrossRef] [PubMed]
  3. R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett.86(17), 171107 (2005). [CrossRef]
  4. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004). [CrossRef] [PubMed]
  5. G. Duchateau, “Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses,” Opt. Express17(13), 10434–10456 (2009). [CrossRef] [PubMed]
  6. J. A. Jarboe, J. J. Adams, and R. P. Hackel, “Analysis of output surface damage resulting from single 351nm, 3ns pulses on sub-nanosecond laser conditioned KD2PO4 crystals,” Proc. SPIE6720, 67200J, 67200J-12 (2007). [CrossRef]
  7. R. A. Negres, P. DeMange, and S. G. Demos, “Investigation of laser annealing parameters for optimal laser-damage performance in deuterated potassium dihydrogen phosphate,” Opt. Lett.30(20), 2766–2768 (2005). [CrossRef] [PubMed]
  8. F. Guillet, B. Bertussi, L. Lamaignère, and C. Maunier, “Effects of thermal annealing on KDP and DKDP on laser damage resistance at 3ω,” Proc. SPIE7842, 78421T, 78421T-5 (2010). [CrossRef]
  9. F. Guillet, B. Bertussi, L. Lamaignere, X. Leborgne, and B. Minot, “Preliminary results on mitigation of KDP surface damage using the ball dimpling method,” Proc. SPIE6720, 672008, 672008-9 (2007). [CrossRef]
  10. S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Bumham, and H. B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE4347, 277–284 (2001). [CrossRef]
  11. C. J. Stolz, “The National Ignition Facility: The Path to a Carbon-Free Energy Future,” Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci.370(1973), 4115–4129 (2012). [CrossRef]
  12. L. W. Hrubesh, R. B. Brusasco, W. Grundler, M. A. Norton, E. E. Donohue, W. A. Molander, S. L. Thompson, S. R. Strodtbeck, P. K. Whitman, M. D. Shirk, P. J. Wegner, M. C. Nostrand, and A. K. Burnham, “Methods for mitigating growth of laser-initiated surface damage on DKDP optics at 351nm,” Proc. SPIE4932, 180–191 (2003). [CrossRef]
  13. P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE6403, 64030Q, 64030Q-7 (2006). [CrossRef]
  14. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt.12(4), 661–664 (1973). [CrossRef] [PubMed]
  15. F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A18(10), 2607–2616 (2001). [CrossRef] [PubMed]
  16. L. Zhang, L. Huang, S. J. Fan, G. X. Bai, K. F. Li, W. Chen, and L. L. Hu, “Distribution of electric field and energy flux around the cracks on the surfaces of Nd-doped phosphate glasses,” Appl. Opt.49(35), 6668–6674 (2010). [PubMed]
  17. J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” Appl. Opt.50(9), C457–C462 (2011). [CrossRef] [PubMed]
  18. S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Searching for optimal mitigation geometries for laser-resistant multilayer high-reflector coatings,” Appl. Opt.50(9), C373–C381 (2011). [CrossRef] [PubMed]
  19. C. J. Stolz, J. Adams, M. D. Shirk, M. A. Norton, and T. L. Weiland, “Engineering meter-scale laser resistant coatings for the near IR,” Proc. SPIE5963, 59630Y, 59630Y-9 (2005). [CrossRef]
  20. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (Academic, 2000).
  21. M. J. Chen, M. Q. Li, J. Cheng, W. Jiang, J. Wang, and Q. Xu, “Study on characteristic parameters influencing laser-induced damage threshold of KH2PO4 crystal surface machined by single point diamond turning,” J. Appl. Phys.110(11), 113103 (2011). [CrossRef] [PubMed]
  22. C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings,” Appl. Opt.45(7), 1594–1601 (2006). [CrossRef] [PubMed]
  23. S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys.54(7), 601–607 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited