OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16814–16830

Linear optical pulse compression based on temporal zone plates

Bo Li, Ming Li, Shuqin Lou, and José Azaña  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 16814-16830 (2013)
http://dx.doi.org/10.1364/OE.21.016814


View Full Text Article

Enhanced HTML    Acrobat PDF (6838 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate time-domain equivalents of spatial zone plates, namely temporal zone plates, as alternatives to conventional time lenses. Both temporal intensity zone plates, based on intensity-only temporal modulation, and temporal phase zone plates, based on phase-only temporal modulation, are introduced and studied. Temporal zone plates do not exhibit the limiting tradeoff between temporal aperture and frequency bandwidth (temporal resolution) of conventional linear time lenses. As a result, these zone plates can be ideally designed to offer a time-bandwidth product (TBP) as large as desired, practically limited by the achievable temporal modulation bandwidth (limiting the temporal resolution) and the amount of dispersion needed in the target processing systems (limiting the temporal aperture). We numerically and experimentally demonstrate linear optical pulse compression by using temporal zone plates based on linear electro-optic temporal modulation followed by fiber-optics dispersion. In the pulse-compression experiment based on temporal phase zone plates, we achieve a resolution of ~25.5 ps over a temporal aperture of ~5.77 ns, representing an experimental TBP larger than 226 using a phase-modulation amplitude of only ~0.8π rad. We also numerically study the potential of these devices to achieve temporal imaging of optical waveforms and present a comparative analysis on the performance of different temporal intensity and phase zone plates.

© 2013 OSA

OCIS Codes
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(320.5520) Ultrafast optics : Pulse compression
(110.6915) Imaging systems : Time imaging

ToC Category:
Ultrafast Optics

History
Original Manuscript: May 1, 2013
Revised Manuscript: June 27, 2013
Manuscript Accepted: June 28, 2013
Published: July 5, 2013

Citation
Bo Li, Ming Li, Shuqin Lou, and José Azaña, "Linear optical pulse compression based on temporal zone plates," Opt. Express 21, 16814-16830 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-16814


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Jannson and J. Jannson, “Temporal self-imaging effect in single-mode fibers,” J. Opt. Soc. Am.71, 1373–1376 (1981).
  2. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett.53(11), 1057–1060 (1984). [CrossRef]
  3. B. H. Kolner, Broadband Optical Modulators (CRC Press, 2011), Chap. 19.
  4. B. H. Kolner, “Generalization of the concepts of focal length and f-number to space and time,” J. Opt. Soc. Am. A11(12), 3229–3234 (1994). [CrossRef]
  5. C. V. Bennett, R. P. Scott, and B. H. Kolner, “Temporal magnification and reversal of 100 Gb/s optical data with an up-conversion time microscope,” Appl. Phys. Lett.65(20), 2513–2515 (1994). [CrossRef]
  6. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett.33(10), 1047–1049 (2008), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-10-1047 . [CrossRef] [PubMed]
  7. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron.30(8), 1951–1963 (1994). [CrossRef]
  8. J. Wigmore and D. Grischkowsky, “Temporal compression of light,” IEEE J. Quantum Electron.14(4), 310–315 (1978). [CrossRef]
  9. J. Bjorkholm, E. Turner, and D. Pearson, “Conversion of cw light into a train of subnanosecond pulses using frequency modulation and the dispersion of a near‐resonant atomic vapor,” Appl. Phys. Lett.26(10), 564–566 (1975). [CrossRef]
  10. J. van Howe, J. Hansryd, and C. Xu, “Multiwavelength pulse generator using time-lens compression,” Opt. Lett.29(13), 1470–1472 (2004). [CrossRef] [PubMed]
  11. M. Kauffman, W. Banyai, A. Godil, and D. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64(3), 270–272 (1994). [CrossRef]
  12. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature456(7218), 81–84 (2008). [CrossRef] [PubMed]
  13. T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhang, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photon. Technol. Lett.20(13), 1097–1099 (2008). [CrossRef]
  14. R. Llorente, R. Clavero, and J. Marti, “Performance analysis of polarimetric PMD monitoring by real-time optical Fourier transformers,” IEEE Photon. Technol. Lett.18(12), 1383–1385 (2006). [CrossRef]
  15. R. P. Scott, N. K. Fontaine, D. J. Geisler, and S. Yoo, “Frequency-to-time-assisted interferometry for full-field optical waveform measurements with picosecond resolution and microsecond record lengths,” IEEE Photon. J.4(3), 748–758 (2012). [CrossRef]
  16. M. A. Muriel, J. Azaña, and A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett.24(1), 1–3 (1999), http://ol.osa.org/abstract.cfm?URI=ol-24-1-1 . [CrossRef] [PubMed]
  17. B. H. Kolner, “The pinhole time camera,” J. Opt. Soc. Am. A14(12), 3349–3357 (1997). [CrossRef]
  18. J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron.7(4), 728–744 (2001). [CrossRef]
  19. L. E. Munioz-Camuniez, V. Torres-Company, J. Lancis, J. Ojeda-Castaneda, and P. Andres, “Electro-optic time lens with an extended time aperture,” J. Opt. Soc. Am. B27(10), 2110–2115 (2010). [CrossRef]
  20. M. T. Flores-Arias, L. Chantada, C. Bao, M. V. Pérez, and C. Gómez-Reino, “Temporal zone plate,” J. Opt. Soc. Am. A25(12), 3077–3082 (2008). [CrossRef] [PubMed]
  21. R. W. Wood, “Zone-plate,” in Physical optics, (The Macmillan Company, New York, 1934).
  22. X. Huang, M. Wojcik, N. Burdet, I. Peterson, G. R. Morrison, D. J. Vine, D. Legnini, R. Harder, Y. S. Chu, and I. K. Robinson, “Quantitative X-ray wavefront measurements of Fresnel zone plate and KB mirrors using phase retrieval,” Opt. Express20(21), 24038–24048 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-21-24038 . [CrossRef] [PubMed]
  23. Y. Wang, K. Kumar, L. Wang, and X. Zhang, “Monolithic integration of binary-phase fresnel zone plate objectives on 2-axis scanning micromirrors for compact microscopes,” Opt. Express20(6), 6657–6668 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-6-6657 . [CrossRef] [PubMed]
  24. G. S. Waldman, “Variations on the Fresnel zone plate,” J. Opt. Soc. Am.56(2), 215–218 (1966). [CrossRef]
  25. L. Rayleigh, “Wave Theory of Light,” in Encyclopedia Britannica, 9th ed., 24, 429 (1888).
  26. R. W. Wood, “LIII. Phase-reversal zone-plates, and diffraction-telescopes,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 45, 511-522 (1898).
  27. J. Kirz, “Phase zone plates for x rays and the extreme uv,” J. Opt. Soc. Am.64(3), 301–309 (1974). [CrossRef]
  28. L. F. Collins, “Diffraction theory description of bleached holograms,” Appl. Opt.7(6), 1236–1237 (1968). [CrossRef] [PubMed]
  29. M. H. Horman, “Efficiences of zone plates and phase zone plates,” Appl. Opt.6(11), 2011–2013 (1967). [CrossRef] [PubMed]
  30. C. E. Shannon, “Communication In The Presence Of Noise,” Proc. IEEE86(2), 447–457 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited