OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16863–16881

Highly contrasted Bessel fringe minima visualization for time-averaged vibration profilometry using Hilbert transform two-frame processing

Krzysztof Patorski and Maciej Trusiak  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 16863-16881 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3892 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Time-averaged fringe patterns in vibration testing of MEMS (microelectromechanical systems) are unaffected by carrier displacements. They are additive superimposition type moirés. These features and Hilbert transform vulnerability to additive trend are utilized for visualization of centers of dark Bessel fringes. Two frames with shifted carrier are subtracted for background and noise correction. Two normalized images of this pattern are calculated with slightly different bias levels and subtracted. The method does not require precise phase shifting between two frames, cosinusoidal carrier and linear recording. It enables detecting light power variations and phase shifting nonuniformities. Synthetic and experimental results corroborate the robustness of the method.

© 2013 OSA

OCIS Codes
(100.2650) Image processing : Fringe analysis
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4120) Instrumentation, measurement, and metrology : Moire' techniques

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 10, 2013
Revised Manuscript: June 19, 2013
Manuscript Accepted: June 19, 2013
Published: July 5, 2013

Krzysztof Patorski and Maciej Trusiak, "Highly contrasted Bessel fringe minima visualization for time-averaged vibration profilometry using Hilbert transform two-frame processing," Opt. Express 21, 16863-16881 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. A. Stetson, “Holographic vibration analysis,” in Holographic Nondestructive Testing, R.E. Erf ed. (Academic Press, 1984).
  2. R. J. Pryputniewicz and K. A. Stetson, “Measurement of vibration patterns using electro-optic holography,” Proc. SPIE1162, 456–467 (1990). [CrossRef]
  3. R. J. Pryputniewicz, “A hybrid approach to deformation analysis,” Proc. SPIE2342, 282–296 (1994). [CrossRef]
  4. A. Bosseboeuf and S. Petitgrand, “Application of microscopic interferometry techniques in the MEMS field,” Proc. SPIE5145, 1–16 (2003). [CrossRef]
  5. L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE5145, 23–32 (2003). [CrossRef]
  6. K. Patorski and A. Styk, “Interferogram intensity modulation calculations using temporal phase shifting: error analysis,” Opt. Eng.45(8), 085602 (2006). [CrossRef]
  7. S. Petitgrand, R. Yahiaoui, A. Bosseboeuf, and K. Danaie, “Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization,” Proc. SPIE4400, 51–60 (2001). [CrossRef]
  8. A. Styk and K. Patorski, “Analysis of systematic errors in spatial carrier phase shifting applied to interferogram intensity modulation determination,” Appl. Opt.46(21), 4613–4624 (2007). [CrossRef] [PubMed]
  9. K. Pokorski and K. Patorski, “Visualization of additive-type moiré and time-average fringe patterns using the continuous wavelet transform,” Appl. Opt.49(19), 3640–3651 (2010). [CrossRef] [PubMed]
  10. M. Wielgus and K. Patorski, “Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations,” Appl. Opt.50(28), 5513–5523 (2011). [CrossRef] [PubMed]
  11. C. Gorecki, M. Jozwik, and L. Salbut, “Multifunctional interferometric platform for on-chip testing the micromechanical properties of MEMS/MOEMS,” J. Microlith., Microfab., Microsyst.4(4), 041402 (2005).
  12. E. Hong, S. Trolier-McKinstry, R. Smith, S. V. Krishnaswamy, and C. B. Freidhoff, “Vibration of micromachined circular piezoelectric diaphragms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(4), 697–706 (2006). [PubMed]
  13. M. Olfatnia, V. R. Singh, T. Xu, J. M. Miao, and L. S. Ong, “Analysis of the vibration modes of piezoelectric circular microdiaphragms,” J. Micromech. Microeng.20(8), 085013 (2010). [CrossRef]
  14. S. Ellingsrud and G. O. Rosvold, “Analysis of data-based TV-holography system used to measure small vibration amplitudes,” J. Opt. Soc. Am. A9(2), 237–251 (1992). [CrossRef]
  15. J. D. Hovanesian and Y. Y. Hung, “Moiré contour-sum, contour-difference, and vibration analysis of arbitrary objects,” Appl. Opt.10(12), 2734–2738 (1971). [CrossRef] [PubMed]
  16. G. O. Rosvold, “Video-based vibration analysis using projected fringes,” Appl. Opt.33(5), 775–786 (1994). [CrossRef] [PubMed]
  17. M. Ragulskis and Z. Navickas, “Interpretation of fringes produced by time-averaged projection moiré,” Strain45, (2009), doi: (and references therein). [CrossRef]
  18. J. Li, X.-Y. Su, and L.-R. Guo, “Improved Fourier transform profilometry for the automatic measurement of the three-dimensional object shapes,” Opt. Eng.29(12), 1439–1444 (1990). [CrossRef]
  19. O. Bryngdahl, “Characteristics of superposed patterns in optics,” J. Opt. Soc. Am.66(2), 87–94 (1976). [CrossRef]
  20. K. Patorski, Handbook of the Moiré Fringe Technique (Elsevier, 1993).
  21. I. Amidror and R. D. Hersch, “The role of Fourier theory and of modulation in the prediction of visible moiré effects,” J. Mod. Opt.56(9), 1103–1118 (2009). [CrossRef]
  22. K. Patorski, K. Pokorski, and M. Trusiak, “Fourier domain interpretation of real and pseudo-moiré phenomena,” Opt. Express19(27), 26065–26078 (2011). [CrossRef] [PubMed]
  23. J. A. Quiroga and M. Servin, “Isotropic n-dimensional fringe pattern normalization,” Opt. Commun.224(4–6), 221–227 (2003). [CrossRef]
  24. M. B. Bernini, A. Federico, and G. H. Kaufmann, “Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform,” Appl. Opt.48(36), 6862–6869 (2009). [CrossRef] [PubMed]
  25. M. Trusiak, K. Patorski, and M. Wielgus, “Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform,” Opt. Express20(21), 23463–23479 (2012). [CrossRef] [PubMed]
  26. J. Na, W. J. Choi, E. S. Choi, S. Y. Ryu, and B. H. Lee, “Image restoration method based on Hilbert transform for full-field optical coherence tomography,” Appl. Opt.47(3), 459–466 (2008). [CrossRef] [PubMed]
  27. M. S. Hrebesh, “Full-field and single shot full-field optical coherence tomography: a novel technique for biomedical imaging applications,” Adv. Opt. Technol.2012, 435408 (2012).
  28. L. Xiong and S. Jia, “Phase-error analysis and elimination for nonsinusoidal waveforms in Hilbert transform digital-fringe projection profilometry,” Opt. Lett.34(15), 2363–2365 (2009). [CrossRef] [PubMed]
  29. M. Chen, H. Guo, and C. Wei, “Algorithm immune to tilt phase-shifting error for phase-shifting interferometers,” Appl. Opt.39(22), 3894–3898 (2000). [CrossRef] [PubMed]
  30. A. Dobroiu, D. Apostol, V. Nascov, and V. Damian, “Tilt-compensating algorithm for phase-shift interferometry,” Appl. Opt.41(13), 2435–2439 (2002). [CrossRef] [PubMed]
  31. K. Patorski, A. Styk, L. Bruno, and P. Szwaykowski, “Tilt-shift error detection in phase-shifting interferometry,” Opt. Express14(12), 5232–5249 (2006). [CrossRef] [PubMed]
  32. Q. Yuan, Z. Gao, Y. Zhou, G. Chu, and C. Zhang, “Calibration of phase-step nonuniformity in sub-nanometer-accuracy testing of high-numerical aperture spherical surfaces,” Opt. Lasers Eng.50(11), 1568–1574 (2012). [CrossRef]
  33. J. S. Lim, J. Kim, and M. S. Chung, “Additive type moire with computer image processing,” Appl. Opt.28(13), 2677–2680 (1989). [CrossRef] [PubMed]
  34. R. Eschbach, “Generation of moiré of nonlinear transfer characteristics,” J. Opt. Soc. Am. A5(11), 1828–1835 (1988). [CrossRef]
  35. L. Saunoriene and M. Ragulskis, “Visualization of fringes in time averaged moiré patterns,” Inf. Technol. Control35(3), 249–254 (2006).
  36. M. Ragulskis, A. Aleksa, and R. Maskeliunas, “Contrast enhancement of time-averaged fringes based on moving average mapping functions,” Opt. Lasers Eng.47(7–8), 768–773 (2009). [CrossRef]
  37. D. W. Robinson and G. T. Reid, eds., Interferogram Analysis: Digital Fringe Pattern Measurement Techniques (Institute of Physics Publishing, 1993).
  38. W. Osten, Digital Processing and Evaluation of Interference Images (Akademie Verlag, 1991).
  39. K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform,” J. Opt. Soc. Am. A18(8), 1862–1870 (2001). [CrossRef] [PubMed]
  40. K. G. Larkin, “Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform,” J. Opt. Soc. Am. A18(8), 1871–1881 (2001). [CrossRef] [PubMed]
  41. S. M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, “A novel approach of fast and adaptive bidimensional empirical mode decomposition,” in Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing (Institute of Electrical and Electronics Engineers, 2008), pp. 1313–1316. [CrossRef]
  42. M. Trusiak and K. Patorski, “Space domain interpretation of incoherent moiré superimpositions using FABEMD,” Proc. SPIE 8697, 18th Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics, 869704 (December 18, 2012). [CrossRef]
  43. M. Trusiak, M. Wielgus, and K. Patorski, “Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition,” Opt. Lasers Eng. (to be published).
  44. N. E. Molin and K. A. Stetson, “Measuring combination mode vibration patterns by hologram interferometry,”J. Phys. E.2(7), 609–612 (1969). [CrossRef]
  45. M. Ragulskis, L. Saunoriene, and R. Maskeliunas, “The structure of moiré grating lines and its influence to time-averaged fringes,” Exp. Tech.33(2), 60–64 (2009). [CrossRef]
  46. S. Yokozeki and T. Suzuki, “Shearing interferometer using the grating as the beam splitter,” Appl. Opt.10(7), 1575–1580 (1971). [CrossRef] [PubMed]
  47. K. Patorski and L. Salbut, “Optical differentiation of distorted gratings using Talbot and double diffraction interferometry,” Opt. Acta (Lond.)32(11), 1323–1331 (1985). [CrossRef]
  48. K. Patorski and S. Kozak, “Self-imaging with nonparabolic approximation of spherical wave fronts,” J. Opt. Soc. Am. A5(8), 1322–1327 (1988). [CrossRef]
  49. K. Patorski, “Moire methods in interferometry,” Opt. Lasers Eng.8(3-4), 147–170 (1988). [CrossRef]
  50. K. Patorski, “The self-imaging phenomenon and applications,” in Progress in Optics, E. Wolf, ed., vol. 27, 1–103 (North Holland, 1989).
  51. J. A. Lin, J. Hsu, and S. G. Shiue, “Quantitative three-beam Ronchi test,” Appl. Opt.29(13), 1912–1918 (1990). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited