OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16888–16900

Low-voltage quantum well microring-enhanced Mach-Zehnder modulator

Hiroki Kaneshige, Rajdeep Gautam, Yuta Ueyama, Redouane Katouf, Taro Arakawa, and Yasuo Kokubun  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 16888-16900 (2013)
http://dx.doi.org/10.1364/OE.21.016888


View Full Text Article

Enhanced HTML    Acrobat PDF (1694 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Modulation characteristics of a novel InGaAs/InAlAs multiple quantum well (MQW) microring-enhanced Mach-Zehnder modulator (MRE-MZM) is investigated in detail and its low-voltage operation with high extinction ratio is demonstrated. The MZM has a single microring resonator in one arm and is driven by the change in electrorefractive index induced by the quantum-confined Stark effect in the MQW core layer. As the MQW, a multiple five-layer asymmetric coupled quantum well (FACQW) is used to obtain a large electrorefractive index change. The driving voltage of the proposed MZM is significantly reduced owing to the enhanced phase shift in the microring resonator. High-mesa waveguide structures are grown by solid-source molecular beam epitaxy and fabricated by inductively coupled plasma etching. A directional coupler with an asymmetric branching ratio is used as an input coupler to prevent the degradation of the extinction ratio of the MZM. The extinction ratio of the fabricated MRE-MZM is approximately 27 dB. The product of the half-wave voltage and phase shifter length, Vπ·L, is 1.7 Vmm in static modulation. This value is one-quarter that of a conventional MZM with the same waveguide structure.

© 2013 OSA

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.4555) Optical devices : Coupled resonators
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

History
Original Manuscript: April 29, 2013
Revised Manuscript: June 18, 2013
Manuscript Accepted: June 24, 2013
Published: July 8, 2013

Citation
Hiroki Kaneshige, Rajdeep Gautam, Yuta Ueyama, Redouane Katouf, Taro Arakawa, and Yasuo Kokubun, "Low-voltage quantum well microring-enhanced Mach-Zehnder modulator," Opt. Express 21, 16888-16900 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-16888


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Kawanishi, S. Sakamoto, and M. Izutsu, “High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect,” IEEE J. Sel. Top. Quantum Electron.13(1), 79–91 (2007). [CrossRef]
  2. R. G. Walker, “High-speed III-V semiconductor intensity modulators,” IEEE J. Quantum Electron.27(3), 654–667 (1991). [CrossRef]
  3. K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, and Y. Tohmori, “A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach–Zehnder modulator with a drive voltage of 2.3 V,” IEEE Photon. Technol. Lett.17(1), 46–48 (2005). [CrossRef]
  4. T. Yasui, Y. Shibata, K. Tsuzuki, N. Kikuchi, M. Ishikawa, Y. Kawaguchi, M. Arai, and H. Yasaka, “10-Gb/s 100-km SMF transmission using InP Mach–Zehnder modulator monolithically integrated with semiconductor optical amplifier,” IEEE Photon. Technol. Lett.20(13), 1178–1180 (2008). [CrossRef]
  5. S. Akiyama, H. Itoh, S. Sekiguchi, S. Hirose, T. Takeuchi, A. Kuramata, and T. Yamamoto, “InP-based Mach-Zehnder modulator with capacitively loaded traveling-wave electrodes,” J. Lightwave Technol.26(5), 608–615 (2008). [CrossRef]
  6. C. R. Doerr, L. Zhang, P. J. Winzer, J. H. Sinsky, A. Adamiecki, N. Sauer, and G. Raybon, “Compact high- speed InP DQPSK modulator,” IEEE Photon. Technol. Lett.19(15), 1184–1186 (2007). [CrossRef]
  7. N. Kikuchi, Y. Shibata, K. Tsuzuki, H. Sanjoh, T. Sato, E. Yamada, T. Ishibashi, and H. Yasaka, “80-Gb/s low-driving-voltage InP DQPSK modulator with an n-p-i-n Structure,” IEEE Photon. Technol. Lett.21(12), 787–789 (2009). [CrossRef]
  8. H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998). [CrossRef]
  9. T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs five-layer asymmetric coupled quantum well exhibiting giant electrorefractive index change,” Jpn. J. Appl. Phys.50, 032204 (2011). [CrossRef]
  10. T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low-voltage Mach-Zehnder modulator with InGaAs/InAlAs five-layer asymmetric coupled quantum well,” Jpn. J. Appl. Phys.51, 042203 (2012). [CrossRef]
  11. M. Hamacher, H. Heidrich, D. G. Rabus, and U. Troppenz, Proc. SPIE4640, 37–45 (2002). [CrossRef]
  12. Y. Kokubun, “Vertically coupled micro-ring resonator filter for integrated add/drop node,” IEICE Trans. Electron.E-88C, 349–362 (2005).
  13. S. Matsuo, Y. Ohiso, and T. Segawa, “A high-speed tunable optical filter using a semiconductor ring resonator for photonic packet switch,” IEICE Trans. Electron.E88-C(3), 295–302 (2005). [CrossRef]
  14. A. Kaplan, A. Greenblatt, G. Harston, P. S. Cho, Y. Achiam, and I. Shpantzer: Proc. Co-herent Optical Technologies and Applications (COTA), 2006, CFC3.
  15. W.-S. Choi, W. Zhao, J.-W. Bae, I. Adesida, B.-A. Yu, Y. L. Lee, and J.-H. Jang, “Micro-racetrack notch filters based on InGaAsP/InP high mesa optical waveguides,” Jpn. J. Appl. Phys.46(4B), 2434–2439 (2007). [CrossRef]
  16. Y. Kokubun, “High Index contrast optical waveguides and their applications to microring filter circuit and wavelength selective switch,” IEICE Trans. Electron.E90-C(5), 1037–1045 (2007). [CrossRef]
  17. J. E. Heebner and R. W. Boyd, “Enhanced all-optical switching by use of a nonlinear fiber ring resonator,” Opt. Lett.24(12), 847–849 (1999). [CrossRef] [PubMed]
  18. J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P.-T. Ho, “Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators,” Opt. Lett.29(7), 769–771 (2004). [CrossRef] [PubMed]
  19. T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, “Lightwave switching in semiconductor microring devices by free carrier injection,” J. Lightwave Technol.21(12), 2997–3003 (2003). [CrossRef]
  20. S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, and T. Yamamoto, “A 1 V peak-to-peak driven 10-Gbps slow-light silicon Mach–Zehnder modulator using cascaded ring resonators,” Appl. Phys. Express3(7), 072202 (2010). [CrossRef]
  21. S. Akiyama and S. Nomura, “Dynamic response of modulators based on cascaded-ring-resonator,” Opt. Express20(20), 21847–21859 (2012). [CrossRef] [PubMed]
  22. W. Green, R. Lee, G. Derose, A. Scherer, and A. Yariv, “Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control,” Opt. Express13(5), 1651–1659 (2005). [CrossRef] [PubMed]
  23. X. Xie, J. Khurgin, J. Kang, and F.-S. Chow, “Linearized Mach–Zehnder intensity modulator,” IEEE Photon. Technol. Lett.15(4), 531–533 (2003). [CrossRef]
  24. Y. Lu, L. Xu, M. Shu, P. Wang, and J. Yao, “Proposal to produce coupled resonator-induced transparency and bistability using microresonator enhanced Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett.20(7), 529–531 (2008). [CrossRef]
  25. M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express18(6), 6172–6182 (2010). [CrossRef] [PubMed]
  26. H. Kaneshige, Y. Ueyama, H. Yamada, H. Yajima, T. Arakawa, and Y. Kokubun, “InGaAs/InAlAs multiple quantum well Mach-Zehnder modulator with single microring resonator,” Jpn. J. Appl. Phys.51(2), 02BG01 (2012). [CrossRef]
  27. H. Kaneshige, Y. Ueyama, H. Yamada, T. Arakawa, and Y. Kokubun, “Quantum well Mach-Zehnder modulator with single microring resonator and optimized arm length,” 17th Microoptics Conf. (MOC’11), G-5 (Nov. 1, 2011).
  28. A. Rostami, “Low threshold and tunable all-optical switch using two-photon absorption in array of nonlinear ring resonators coupled to MZI,” Microelectron. J.37(9), 976–981 (2006). [CrossRef]
  29. M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, J. M. Hvam, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express18(6), 6172–6182 (2010). [CrossRef] [PubMed]
  30. T. Makino, T. Gotoh, R. Hasegawa, T. Arakawa, and Y. Kokubun, “Microring resonator wavelength tunable filter using five-layer asymmetric coupled quantum well,” J. Lightwave Technol.29(16), 2387–2393 (2011). [CrossRef]
  31. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C. C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express17(25), 22484–22490 (2009). [CrossRef] [PubMed]
  32. S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Laterally coupled buried heterostructure high-Q ring resonators,” IEEE Photon. Technol. Lett.16(10), 2266–2268 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited