OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 17066–17076

Active unidirectional propagation of surface plasmons at subwavelength slits

Mehdi Afshari Bavil, Zhiping Zhou, and Qingzhong Deng  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 17066-17076 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1323 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Highly efficient, active and compact, unidirectional surface plasmon (SP) propagator composed of double subwavelength slits; filled with organic electro-optic (EO) material is proposed and investigated. By selecting appropriate structure parameters, obtained by solving phase relations between slits, the relative phase of SP generated at the slit exit aperture can be tailored. Simulation results show under normal illumination and external voltage of 8.7 V, SP launching efficiency of 55% and unidirectional SP extinction ratio about 47dB at wavelength of 632.8 nm is achieved. The power consumption of the structure is on the order of 9 fJ/bit which meet the power consumption limitation for optical devices. Moreover, the structure is very compact with effective total length of 1.2 µm and thickness of 0.6 µm.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.0250) Optical devices : Optoelectronics
(230.2090) Optical devices : Electro-optical devices
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

Original Manuscript: April 30, 2013
Revised Manuscript: June 15, 2013
Manuscript Accepted: June 28, 2013
Published: July 10, 2013

Mehdi Afshari Bavil, Zhiping Zhou, and Qingzhong Deng, "Active unidirectional propagation of surface plasmons at subwavelength slits," Opt. Express 21, 17066-17076 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Gao, L. Tang, F. Hu, R. Guo, X. Wang, and Z. Zhou, “Active metal strip hybrid plasmonic waveguide with low critical material gain,” Opt. Express20(10), 11487–11495 (2012). [CrossRef] [PubMed]
  2. F. Hu, H. Yi, and Z. Zhou, “Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities,” Opt. Express19(6), 4848–4855 (2011). [CrossRef] [PubMed]
  3. M. Afshari Bavil, L. Gao, and X. Sun, “A compact nanoplasmonics filter and intersection structure based on utilizing a slot cavity and a Fabry–Perot resonator,” Plasmonics, doi:. [CrossRef]
  4. A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, O. E. Mustecaplıoglu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett.101(12), 121113 (2012). [CrossRef]
  5. C. Lee, K. Lo, and T. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys.46(7A), 4144–4147 (2007). [CrossRef]
  6. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8(1), 281–286 (2008). [CrossRef] [PubMed]
  7. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers,” Nano Lett.8(11), 4048–4052 (2008). [CrossRef] [PubMed]
  8. F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science340(6130), 328–330 (2013). [CrossRef] [PubMed]
  9. J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340(6130), 331–334 (2013). [CrossRef] [PubMed]
  10. T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett.92(10), 101501 (2008). [CrossRef]
  11. Q. Li, T. B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett.98(25), 251109 (2011).
  12. J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113–041115 (2010). [CrossRef]
  13. F. L. Tejeira, S. G. Rodrigo, L. M. Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007). [CrossRef]
  14. Y. K. Wang, X. R. Zhang, H. J. Tang, K. Yang, Y. X. Wang, Y. L. Song, T. H. Wei, and C. H. Wang, “A tunable unidirectional surface plasmon polaritons source,” Opt. Express17(22), 20457–20464 (2009). [CrossRef] [PubMed]
  15. J. R. Salgueiro and Y. S. Kivshar, “Nonlinear plasmonic directional couplers,” Appl. Phys. Lett.97(8), 081106–081108 (2010). [CrossRef]
  16. A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett.11(10), 4207–4212 (2011). [CrossRef] [PubMed]
  17. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011). [CrossRef] [PubMed]
  18. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photonics Lett.3(11), 654–657 (2009). [CrossRef]
  19. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  20. H. A. Atwater, “The promise of plasmonics,” Sci. Am.296(4), 56–62 (2007). [CrossRef] [PubMed]
  21. D. Yu. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett.12(5), 2459–2463 (2012). [CrossRef] [PubMed]
  22. Y. M. Liu, S. Palomba, Y. S. Park, T. Zentgraf, X. B. Yin, and X. Zhang, “Compact Magnetic Antennas for Directional Excitation of Surface Plasmons,” Nano Lett.12(9), 4853–4858 (2012). [CrossRef] [PubMed]
  23. J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly Efficient All-Optical Control of Surface-Plasmon-Polariton Generation Based on a Compact Asymmetric Single Slit,” Nano Lett.11(7), 2933–2937 (2011). [CrossRef] [PubMed]
  24. J. Chen, Z. Li, J. Xiao, and Q. Gong, “Efficient All-Optical Molecule-Plasmon Modulation Based on T-shape Single Slit,” Plasmonics, doi:. [CrossRef]
  25. T. Satoh, Y. Toya, S. Yamamoto, T. Shimura, K. Kuroda, Y. Takahashi, M. Yoshimura, Y. Mori, T. Sasaki, and S. Ashihara, “Generation of mid- to far-infrared ultrashort pulses in 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” J. Opt. Soc. Am. B27(12), 2507–2511 (2010). [CrossRef]
  26. L. Dalton and S. Benight, “Theory-Guided Design of Organic Electro-Optic Materials and Devices,” Polymers3(4), 1325–1351 (2011). [CrossRef]
  27. B. Ruiz, Z. Yang, V. Gramlich, M. Jazbinseka, and P. Gunter, “Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity,” J. Mater. Chem.16, 2839–2842 (2006). [CrossRef]
  28. S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J. P. Maria, and D. E. Aspnes, “Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films,” Opt. Lett.34(18), 2867–2869 (2009). [CrossRef] [PubMed]
  29. V. J. Sorger, D. Norberto, L. Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1, 17–22 (2012).
  30. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. R. Dalton, A. K. Y. Jen, and A. Scherer, “Optical Modulation and Detection in Slotted Silicon Waveguides,” Opt. Express13(14), 5216–5226 (2005). [CrossRef] [PubMed]
  31. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer / sol-gel waveguide modulators with exceptionally large electrooptic coefficients,” Nat. Photonics1(3), 180–185 (2007). [CrossRef]
  32. W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett.84(19), 3729–3731 (2004). [CrossRef]
  33. M. Xu, F. Li, T. Wang, J. Wu, L. Lu, L. Zhou, and Y. Su, “Design of an electro-optic modulator based on a silicon-plasmonic hybrid phase shifter,” J. Light Wave Tech.31, 1170–1177 (2013).
  34. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009). [CrossRef] [PubMed]
  35. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express19(12), 11841–11851 (2011). [CrossRef] [PubMed]
  36. S. Inoue and S. Yokoyama, “Highly compact organic electro-optic modulator based on nanoscale plasmon metal gap waveguides,” SPIE-OSA-IEEE7631, 763128 (2009).
  37. H. Nasari and M. S. Abrishamian, “Electrically tunable light focusing via a plasmonic lens,” J. Opt.14(12), 125002 (2012). [CrossRef]
  38. X. Mei, X. G. Huang, and T. Jin, “A sub-wavelength Electro-optic Switch Based on Plasmonic T-Shaped Waveguide,” Plasmonics6(4), 613–618 (2011). [CrossRef]
  39. L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amenda, and A. Jen, “From molecules to opto-chips: organic electro-optic materials,” J. Mater. Chem.9(9), 1905–1920 (1999). [CrossRef]
  40. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  41. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17(19), 16646–16653 (2009). [CrossRef] [PubMed]
  42. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express18(12), 13173–13179 (2010). [CrossRef] [PubMed]
  43. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  44. F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 microm,” Opt. Lett.34(6), 839–841 (2009). [CrossRef] [PubMed]
  45. B. Chiou and J. Tsai, “Antireflective coating for ITO films deposited on glass substrate,” J. Mater. Sci. Mater. Electron.10(7), 491–495 (1999). [CrossRef]
  46. A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, Th. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express19(9), 8855–8869 (2011). [CrossRef] [PubMed]
  47. F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B75(20), 205322 (2007). [CrossRef]
  48. S. Bozhevolnyi, Plasmonic Nanoguide and Circuits (Pan Stanford Publishing, 2008), pp.10–20.
  49. W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt.8(4), S87–S93 (2006). [CrossRef]
  50. E. A. Bahaa Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 1991), Chapter 18, pp. 696–737.
  51. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited